On the normal form of a stochastic matrix
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 2, pp. 60-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The normal form of a Markov chain's stochastic matrix is defined based on the concepts of state compatibility and safety. Compared to the classical normal form it contains more information for defining asymptotic equivalence of states.
Keywords: stochastic matrix, normal form
Mots-clés : Markov chain.
@article{UZKU_2012_154_2_a5,
     author = {Yu. A. Alpin and V. S. Alpina},
     title = {On the normal form of a~stochastic matrix},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {60--72},
     year = {2012},
     volume = {154},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a5/}
}
TY  - JOUR
AU  - Yu. A. Alpin
AU  - V. S. Alpina
TI  - On the normal form of a stochastic matrix
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2012
SP  - 60
EP  - 72
VL  - 154
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a5/
LA  - ru
ID  - UZKU_2012_154_2_a5
ER  - 
%0 Journal Article
%A Yu. A. Alpin
%A V. S. Alpina
%T On the normal form of a stochastic matrix
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2012
%P 60-72
%V 154
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a5/
%G ru
%F UZKU_2012_154_2_a5
Yu. A. Alpin; V. S. Alpina. On the normal form of a stochastic matrix. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 2, pp. 60-72. http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a5/

[1] Kolmogorov A. N., “Tsepi Markova so schëtnym chislom vozmozhnykh sostoyanii”, Byul. Mosk. un-ta. Matematika i mekhanika, 1:3 (1937), 1–16 | Zbl

[2] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967, 576 pp. | MR

[3] Minc H., Nonnegative matrices, Wiley, N.Y., 1988, 218 pp. | MR | Zbl

[4] Sachkov V. N., Tarakanov V. N., Kombinatorika neotritsatelnykh matrits, TVP, M., 2000, 448 pp. | MR | Zbl

[5] Romanovskii V. I., Diskretnye tsepi Markova, Gostekhizdat, M.–L., 1949, 436 pp. | MR

[6] Shiryaev A. N., Veroyatnost, v 2 t., v. 1, MTsNMO, M., 2004, 520 pp.; т. 2, 408 с.

[7] Dobrushin R. L., “Tsentralnaya predelnaya teorema dlya neodnorodnykh tsepei Markova. I”, Teoriya veroyatnostei i eë primeneniya, 1:1 (1956), 72–89 | MR | Zbl

[8] Alpina V. S., “Klassifikatsiya sostoyanii veroyatnostnogo avtomata, orientirovannaya na izuchenie ego ergodicheskikh svoistv”, Veroyatnostnye metody i kibernetika, 17, Izd-vo Kazan. un-ta, Kazan, 1980, 15–22 | MR

[9] Alpin Yu. A., Alpina V. S., “Teorema Perrona–Frobeniusa: dokazatelstvo s pomoschyu tsepei Markova”, Zap. nauch. semin. POMI, 359, 2008, 5–16 | Zbl

[10] Shreider Yu. A., Ravenstvo, skhodstvo, poryadok, Nauka, M., 1971, 256 pp. | MR