V. V. Morozov, D. A. Gudkov and the first part of the $16$th Hilbert problem
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 2, pp. 31-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We reveal some little-known facts from the history of the solution of the $16$th Hilbert problem. In particular, we consider the role of Professor V. V. Morozov (Kazan University) in the correction of errors in D. A. Gudkov's initial results about the topology of the plane real algebraic curves of degree $6$. The study is based on the preserved correspondence between D. A. Gudkov and V. V. Morozov.
Keywords: plane algebraic curves, $16$th Hilbert problem, D. A. Gudkov, Gudkov's conjecture, congruence modulo $8$.
Mots-clés : V. V. Morozov
@article{UZKU_2012_154_2_a3,
     author = {G. M. Polotovskiy},
     title = {V. {V.~Morozov,} {D.} {A.~Gudkov} and the first part of the $16$th {Hilbert} problem},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {31--43},
     year = {2012},
     volume = {154},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a3/}
}
TY  - JOUR
AU  - G. M. Polotovskiy
TI  - V. V. Morozov, D. A. Gudkov and the first part of the $16$th Hilbert problem
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2012
SP  - 31
EP  - 43
VL  - 154
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a3/
LA  - ru
ID  - UZKU_2012_154_2_a3
ER  - 
%0 Journal Article
%A G. M. Polotovskiy
%T V. V. Morozov, D. A. Gudkov and the first part of the $16$th Hilbert problem
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2012
%P 31-43
%V 154
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a3/
%G ru
%F UZKU_2012_154_2_a3
G. M. Polotovskiy. V. V. Morozov, D. A. Gudkov and the first part of the $16$th Hilbert problem. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 2, pp. 31-43. http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a3/

[1] Gudkov D. A., Utkin G. A., “Topologiya krivykh 6-go poryadka i poverkhnostei 4-go poryadka”, Uchen. zap. Gork. un-ta, 87, 1969, 3–213

[2] Gudkov D. A., “Postroenie novoi serii $M$-krivykh”, Dokl. AN SSSR, 200:6 (1971), 1269–1272 | MR | Zbl

[3] Polotovskii G. M., “Topologiya veschestvennykh algebraicheskikh krivykh: istoriya i rezultaty”, Ist.-matem. issled. Vtoraya ser., 2011, no. 14(49), 177–212 | MR | Zbl

[4] Harnack A., “Über die Vieltheiligkeit der ebenen algebraishen Curven”, Math. Ann., 10 (1876), 189–199 | DOI | MR | Zbl

[5] Hilbert D., “Ueber die reellen Züge algebraisher Curven”, Math. Ann., 38 (1891), 115–138 | DOI | MR

[6] P. S. Aleksandrov (red.), Problemy Gilberta, Nauka, M., 1969, 239 pp. | MR

[7] Rohn K., “Die ebene Kurve 6 Ordnung mit elf Ovalen”, Berichte über Verhandl., 63 (1911), 540–555 | Zbl

[8] Kahn G., Eine allgemeine Methode zur Untersuchung der Gestalten algebraischer Kurven, Inaugural Dissertation, Univ. Buchdruckerei von W. Kaestner, Göttingen, 1909

[9] Löbenstein K., Ueber den Satz, dass ebene, algebraische Kurve 6 Ordnung mit 11 sich ein ander ausschlies-senden Ovalen nicht existiert, Inaugural Dissertation, Univ. Buchdruckerei von W. Kaestner, Göttingen, 1910

[10] Petrovsky I., “On the topology of real plane algebraic curves”, Ann. Math., 39:1 (1938), 189–209 | DOI | MR

[11] Gubina E. V., “Akademik A. A. Andronov (k 110-letiyu so dnya rozhdeniya)”, Matematika v vysshem obrazovanii, 2011, no. 9, 73–82

[12] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, Dokl. AN SSSR, 14:5 (1937), 247–251 | MR

[13] Gordon E. I., “Recollection of D. A. Gudkov”, Topology of real algebraic Varieties and Related Topics, AMS Translations Ser. 2, 173, 1996, 11–16 | MR | Zbl

[14] Polotovskiy G. M., “Dmitrii Andreevich Gudkov”, Topology of real algebraic Varieties and Related Topics, AMS Translations Ser. 2, 173, 1996, 1–9 | MR

[15] Polotovskii G. M., “Dmitrii Andreevich Gudkov”, Vestn. Nizhegor. un-ta. Matem. modelir. i optim. upr., 2001, no. 1(23), 5–16 | Zbl

[16] Arnold V. I., “O raspolozhenii ovalov veschestvennykh ploskikh algebraicheskikh krivykh, involyutsiyakh chetyrëkhmernykh gladkikh mnogoobrazii i arifmetike tselochislennykh kvadratichnykh form”, Funkts. analiz i ego prilozh., 5:3 (1971), 1–9 | MR | Zbl

[17] Rokhlin V. A., “Sravneniya po modulyu 16 v 16-oi probleme Gilberta”, Funkts. analiz i ego prilozh., 6:4 (1972), 58–64 | MR | Zbl

[18] Gudkov D. A., Ustanovlenie vsekh suschestvuyuschikh tipov neosobykh ploskikh proektivnykh krivykh shestogo poryadka s deistvitelnymi koeffitsientami, Dis. $\dots$ kand. fiz.-mat. nauk, Gorkii, 1952, 172 pp.

[19] Gudkov D. A., “Polnaya topologicheskaya klassifikatsiya neosobykh deistvitelnykh algebraicheskikh krivykh shestogo poryadka v deistvitelnoi proektivnoi ploskosti”, Dokl. AN SSSR, 98:4 (1954), 521–524 | MR | Zbl

[20] Gudkov D. A., “Topologiya veschestvennykh proektivnykh algebraicheskikh mnogoobrazii”, Usp. matem. nauk, 29:4 (1974), 3–79 | MR | Zbl

[21] Rokhlin V. A., “Kompleksnye topologicheskie kharakteristiki veschestvennykh algebraicheskikh krivykh”, Usp. matem. nauk, 33:5 (1978), 77–89 | MR | Zbl

[22] Arnold V. I., Veschestvennaya algebraicheskaya geometriya, MTsNMO, M., 2009, 86 pp.

[23] Arnold V. I., Eksperimentalnoe nablyudenie matematicheskikh faktov, MTsNMO, M., 2006, 119 pp. | MR

[24] Arnold V. I., Chto takoe matematika?, MTsNMO, M., 2002, 103 pp.

[25] Weyl H., “David Hilbert and His Mathematical Work”, Bull. Amer. Math. Soc., 50:9 (1944), 612–654 | DOI | MR | Zbl

[26] Zabotin V. I., Eskin L. D., Ermolaev Yu. B., Vladimir Vladimirovich Morozov, Izd-vo Kazan. un-ta, Kazan, 2002, 22 pp.

[27] V. V. Morozov (15.12.1910 – 1.1.1975), URL: http://www.vvmorozov2011.ksu.ru/index.php?id=2&idm=3

[28] Koreshkov N. A., “Zhizn i deyatelnost V. V. Morozova”, Doklad, Mezhdunar. konf. “Algebra i matematicheskaya logika”, posvyasch. 100-letiyu so dnya rozhd. V. V. Morozova (Kazan, 25–30 sent. 2011 g.) URL: http://video.yandex.ru/users/vvmorozov2011/view/25/?cauthor=vvmorozov2011&cid=1#hq

[29] Panyushev D. I., Vinberg E. B., “The work of Vladimir Morozov on Lie algebras”, Transform. Groups, 15:4 (2010), 1001–1013 | DOI | MR | Zbl

[30] Vinberg E. B., “O rabotakh V. V. Morozova po algebram Li”, Doklad, Mezhdunar. konf. “Algebra i matematicheskaya logika”, posvyasch. 100-letiyu so dnya rozhd. V. V. Morozova (Kazan, 25–30 sent. 2011 g.) URL: http://video.yandex.ru/users/vvmorozov2011/view/22/?cauthor=vvmorozov2011&cid=1#hq

[31] Morozov V. V., “K voprosu ob osobykh tochkakh ploskikh krivykh”, Trudy In-ta inzh. kommun. stroit., v. 3, Kazan, 1935, 3–6