On the locus of $p$-characters defining simple reduced enveloping algebras
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 2, pp. 196-203 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We confirm in two cases the conjecture stating that the reduced enveloping algebra $U_\xi(\mathfrak g)$ of a restricted Lie algebra $\mathfrak g$ is simple if and only if the alternating bilinear form associated with the given $p$-character $\xi\in\mathfrak g^*$ is nondegenerate.
Keywords: restricted Lie algebras, Frobenius Lie algebras, reduced enveloping algebras.
Mots-clés : solvable Lie algebras
@article{UZKU_2012_154_2_a18,
     author = {S. M. Skryabin},
     title = {On the locus of $p$-characters defining simple reduced enveloping algebras},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {196--203},
     year = {2012},
     volume = {154},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a18/}
}
TY  - JOUR
AU  - S. M. Skryabin
TI  - On the locus of $p$-characters defining simple reduced enveloping algebras
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2012
SP  - 196
EP  - 203
VL  - 154
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a18/
LA  - en
ID  - UZKU_2012_154_2_a18
ER  - 
%0 Journal Article
%A S. M. Skryabin
%T On the locus of $p$-characters defining simple reduced enveloping algebras
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2012
%P 196-203
%V 154
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a18/
%G en
%F UZKU_2012_154_2_a18
S. M. Skryabin. On the locus of $p$-characters defining simple reduced enveloping algebras. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 2, pp. 196-203. http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a18/

[1] Strade H., Farnsteiner R., Modular Lie Algebras and Their Representations, Marcel Dekker, Inc., N.Y., 1988, 312 pp. | MR | Zbl

[2] Skryabin S., “Hopf Galois extensions, triangular structures, and Frobenius Lie algebras in prime characteristic”, J. Algebra, 277:1 (2004), 96–128 | DOI | MR | Zbl

[3] Strade H., “Darstellungen auflösbarer Lie-$p$-Algebren”, Math. Ann., 232:1 (1978), 15–32 | DOI | MR | Zbl

[4] Premet A., Skryabin S., “Representations of restricted Lie algebras and families of associative $\mathcal L$-algebras”, J. Reine Angew. Math., 507 (1999), 189–218 | MR | Zbl

[5] Dixmier J., Algèbres Enveloppantes, Gauthier-Villars, Paris, 1974, 349 pp. | MR | Zbl

[6] Blattner R. J., “Induced and produced representations of Lie algebras”, Trans. Amer. Math. Soc., 144 (1969), 457–474 | DOI | MR

[7] Winter D. J., “On the toral structure of Lie $p$-algebras”, Acta. Math., 123:1 (1969), 69–81 | DOI | MR | Zbl

[8] Weisfeiler B. Yu., Kac V. G., “On irreducible representations of Lie $p$-algebras”, Funktsion. Anal. Prilozh., 5:2 (1971), 28–36 (in Russian) | MR | Zbl

[9] Friedlander E. M., Parshall B. J., “Modular representation theory of Lie algebras”, Amer. J. Math., 110:6 (1988), 1055–1093 | DOI | MR | Zbl