On lattices connected with various types of classes of algebraic structures
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 2, pp. 167-179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This survey paper reviews some recent results related to various derived lattices connected with various types of classes of algebraic structures which were obtained by the authors.
Keywords: axiomatizable class, variety, quasivariety, prevariety, finitary prevariety, identity, quasi-identity, lattice, subsemilattice lattice.
@article{UZKU_2012_154_2_a16,
     author = {A. Nurakunov and M. Semenova and A. Zamojska-Dzienio},
     title = {On lattices connected with various types of classes of algebraic structures},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {167--179},
     year = {2012},
     volume = {154},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a16/}
}
TY  - JOUR
AU  - A. Nurakunov
AU  - M. Semenova
AU  - A. Zamojska-Dzienio
TI  - On lattices connected with various types of classes of algebraic structures
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2012
SP  - 167
EP  - 179
VL  - 154
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a16/
LA  - en
ID  - UZKU_2012_154_2_a16
ER  - 
%0 Journal Article
%A A. Nurakunov
%A M. Semenova
%A A. Zamojska-Dzienio
%T On lattices connected with various types of classes of algebraic structures
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2012
%P 167-179
%V 154
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a16/
%G en
%F UZKU_2012_154_2_a16
A. Nurakunov; M. Semenova; A. Zamojska-Dzienio. On lattices connected with various types of classes of algebraic structures. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 2, pp. 167-179. http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a16/

[1] Birkhoff G., “Universal algebra”, Proc. First Can. Math. Congress (Montreal, 1945), Univ. of Toronto Press, Toronto, 1946, 310–326 | MR | Zbl

[2] Maltsev A. I., “Some Borderline problems of algebra and logic”, Proc. Int. Congr. Math. (Moscow, 1966), Mir, Moscow, 1968, 217–231 | MR

[3] Adaricheva K. V., Gorbunov V. A., Dziobiak W., “Algebraic atomistic lattices of quasivarieties”, Algebra Logic, 36:4 (1997), 213–225 | MR | Zbl

[4] Gorbunov V. A., Algebraic Theory of Quasivarieties, Plenum, N.Y., 1998, 316 pp. | MR

[5] Adaricheva K., Nation J. B., Lattices of quasi-equational theories as congruence lattices of semilattices with operators, Part I, 2012, 27 pp., arXiv: 1106.2203v3[math.RA] | MR

[6] Adaricheva K., Nation J. B., Lattices of quasi-equational theories as congruence lattices of semilattices with operators, Part II, 2012, 19 pp., arXiv: 1106.2204v3[math.RA] | MR

[7] Nation J. B., Lattices of theories in languages without equality, URL: , 2010, 15 pp. http://www.math.hawaii.edu/~jb/coopers.pdf

[8] McNulty G. F., “How Undecidable is the Elementary Theory of the Lattice of Equational Theories?”, Int. Conf. on Algebras and Lattices (June, 2010, Prague, Czech Republic) URL: http://www.karlin.mff.cuni.cz/~ical/presentations/mcnulty.pdf

[9] Adams M., Adaricheva K., Dziobiak W., Kravchenko A., “Open questions related to the problem of Birkhoff and Maltsev”, Studia Logica, 78:1–2 (2004), 357–378 | DOI | MR | Zbl

[10] Agliano P., Nation J. B., “Lattices of pseudovarieties”, J. Austral. Math. Soc. Ser. A, 46:3 (1989), 177–183 | DOI | MR | Zbl

[11] Nurakunov A. M., “Quasivariety lattices having no reasonable description”, Int. J. Algebra Comput., 22:3 (2012), 1–17 | DOI | MR

[12] Pal'chunov D. E., “Lattices of relatively axiomatizable classes”, Formal Concept Analysis, 5th Int. Conf., ICFCA 2007, Proc., Lecture Notes in Artificial Intelligence, 4390, Springer-Verlag, Berlin–Heidelberg, 2007, 221–239

[13] Gorbunov V. A., “Structure of lattices of varieties and lattices of quasivarieties: Similarity and difference. II”, Algebra Logic, 34:4 (1995), 203–218 | DOI | MR | Zbl

[14] Gorbunov V. A., Tumanov V. I., “The structure of lattices of quasivarieties”, Proc. Inst. Math., Sib. Branch Acad. Sci. USSR, 2, 1982, 12–44 (in Russian) | MR | Zbl

[15] Vernitski A., “Finite quasivarieties and self-referential conditions”, Studia Logica, 78 (2004), 337–348 | DOI | MR | Zbl

[16] Banaschewski B., Herrlich H., “Subcategories defined by implications”, Houston J. Math., 2 (1976), 149–171 | MR | Zbl

[17] Semenova M. V., Zamojska-Dzienio A., “On lattices of subclasses”, Sib. J. Math., 53:5 (2012), 1111–1132 URL: http://www.mini.pw.edu.pl/~azamojsk/LpSZD.pdf | DOI | MR | Zbl

[18] Gorbunov V. A., Tumanov V. I., “A class of lattices of quasivarieties”, Algebra Logic, 19 (1980), 38–52 | DOI | MR | Zbl

[19] Gorbunov V. A., Tumanov V. I., “On the structure of lattices of quasivarieties”, Sov. Math. Dokl., 22 (1980), 333–336 | MR | Zbl

[20] Nurakunov A. M., “Finite lattices as relative congruence lattices of finite algebras”, Algebra Universalis, 57:2 (2007), 207–214 | DOI | MR | Zbl

[21] Nurakunov A. M., “Equational theories as congruences of enriched monoids”, Algebra Universalis, 58:3 (2008), 357–372 | DOI | MR | Zbl

[22] Gorbunov V. A., “Structure of lattices of varieties and lattices of quasivarieties: Similarity and difference. I”, Algebra Logic, 34:2 (1995), 73–86 | DOI | MR | Zbl

[23] Gorbunov V. A., “Structure of lattices of varieties and lattices of quasivarieties: Similarity and difference. III”, Algebra Logic, 34:6 (1995), 359–370 | DOI | MR | Zbl

[24] Rubin H., Rubin J. E., Equivalents of the Axiom of Choice, v. II, Studies in Logic and the Foundations of Mathematics, 116, North-Holland, Elsevier Science, Amsterdam–N.Y.–Oxford, 1985, 322 pp. | MR | Zbl

[25] Lampe W. A., “A perspective on algebraic representations of lattices”, Algebra Universalis, 31 (1994), 337–364 | DOI | MR | Zbl

[26] Freese R., Ježek J., Nation J. B., Free lattices, Mathematical Surveys and Monographs, 42, Am. Math. Soc., Providence, RI, 1995, 293 pp. | DOI | MR | Zbl

[27] Repnitskiǐ V. B., “On finite lattices which are embeddable in subsemigroup lattices”, Semigroup Forum, 46 (1993), 388–397 | DOI | MR | Zbl