On cofinitary groups
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 2, pp. 159-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A cofinitary group is a subgroup of the symmetric group on the natural numbers in which all non-identity members have finitely many fixed points. In this paper we describe some questions about these groups that interest us as well as questions on related cardinal invariants and isomorphism types.
Keywords: cofinitary groups
Mots-clés : cardinal invariants, isomorphism types.
@article{UZKU_2012_154_2_a15,
     author = {B. Kastermans and Y. Zhang},
     title = {On cofinitary groups},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {159--166},
     year = {2012},
     volume = {154},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a15/}
}
TY  - JOUR
AU  - B. Kastermans
AU  - Y. Zhang
TI  - On cofinitary groups
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2012
SP  - 159
EP  - 166
VL  - 154
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a15/
LA  - en
ID  - UZKU_2012_154_2_a15
ER  - 
%0 Journal Article
%A B. Kastermans
%A Y. Zhang
%T On cofinitary groups
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2012
%P 159-166
%V 154
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a15/
%G en
%F UZKU_2012_154_2_a15
B. Kastermans; Y. Zhang. On cofinitary groups. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 2, pp. 159-166. http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a15/

[1] Kunen K., Set theory: An Introduction to Independence Proofs, North-Holland Pub. Co., Amsterdam–N.Y.–Oxford, 1980, 313 pp. | MR | Zbl

[2] Adeleke S. A., “Embeddings of infinite permutation groups in sharp, highly transitive, and homogeneous groups”, Proc. Edinb. Math. Soc., 31:2 (1988), 169–178 | DOI | MR | Zbl

[3] Truss J. K., “Embeddings of infinite permutation groups”, Proceedings of Groups (St. Andrews, 1985), eds. E. F. Robertson, C. N. Campbell, Cambridge Univ. Press, Cambridge, 1986, 335–351 | MR

[4] Cameron P. J., “Cofinitary permutation groups”, Bull. London Math. Soc., 28:2 (1996), 113–140 | DOI | MR | Zbl

[5] Zhang Y., “Maximal cofinitary groups”, Arch. Math. Logic, 39:1 (2000), 41–52 | DOI | MR | Zbl

[6] Kechris A. S., Classical Descriptive Set Theory, Springer-Verlag, N.Y., 1995, 402 pp. | MR | Zbl

[7] Talagrand M., “Compacts de Fonctions Mesurables et Filtres Non Mesurables”, Studia Math., 67:1 (1980), 13–43 | MR | Zbl

[8] Mathias A. R. D., “Happy Families”, Ann. Math. Logic, 12:1 (1977), 59–111 | DOI | MR | Zbl

[9] Miller A. W., “Infinite Combinatorics and Definability”, Ann. Pure Appl. Logic, 41:2 (1989), 179–203 | DOI | MR | Zbl

[10] Gao S., Zhang Y., “Definable sets of generators in maximal cofinitary groups”, Adv. Math., 217:2 (2008), 814–832 | DOI | MR | Zbl

[11] Kastermans B., “The Complexity of Maximal Cofinitary Groups”, Proc. Amer. Math. Soc., 137 (2009), 307–316 | DOI | MR | Zbl

[12] Blass A., “Combinatorial Cardinal Characteristics of the Continuum”, Handbook of Set Theory, eds. M. Foreman, A. Kanamori, Springer, Dordrecht–Heidelberg–London–N.Y., 2012, 395–489 | MR

[13] Kastermans B., “Isomorphism Types of Maximal Cofinitary Groups”, Bull. Symbolic Logic, 15:3 (2009), 300–319 | DOI | MR | Zbl

[14] Zhang Y., “Permutation groups and covering properties”, J. London Math. Soc., 63:1 (2001), 1–15 | DOI | MR | Zbl

[15] Zhang Y., “Adjoining cofinitary permutations”, J. Symbolic Logic, 64:4 (1999), 1803–1810 | DOI | MR | Zbl

[16] Zhang Y., “Adjoining cofinitary permutations (II)”, Arch. Math. Logic, 42:2 (2003), 153–163 | DOI | MR | Zbl

[17] Zhang Y., Cofinitary Groups and Almost Disjoint Families, Ph D Thesis, Rutgers University, New Brunswick, 1997 | MR

[18] Michael H., Steprans J., Zhang Y., “Cofinitary groups, almost disjoint and dominating families”, J. Symbolic Logic, 66:3 (2001), 1259–1276 | DOI | MR | Zbl

[19] Brendle J., Spinas O., Zhang Y., “Uniformity of the meager ideal and maximal cofinitary groups”, J. Algebra, 232:1 (2000), 209–225 | DOI | MR | Zbl

[20] Brendle J., “The almost-disjointness number may have countable cofinality”, Trans. Amer. Math. Soc., 355:7 (2003), 2633–2649 | DOI | MR | Zbl