Voir la notice du chapitre de livre
@article{UZKU_2012_154_2_a14,
author = {M. M. Arslanov},
title = {Relative enumerability and the $d$-c.~e.~degrees},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {152--158},
year = {2012},
volume = {154},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a14/}
}
TY - JOUR AU - M. M. Arslanov TI - Relative enumerability and the $d$-c. e. degrees JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2012 SP - 152 EP - 158 VL - 154 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a14/ LA - en ID - UZKU_2012_154_2_a14 ER -
M. M. Arslanov. Relative enumerability and the $d$-c. e. degrees. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 2, pp. 152-158. http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a14/
[1] Arslanov M. M., “On a hierarchy of the degrees of unsolvability”, Ver. Metody i Kibernetika, 18, 1982, 10–17 (in Russian) | MR | Zbl
[2] Jockusch C. G. (Jr.), Shore R. A., “Pseudo jump operators. I: The R. E. case”, Trans. Amer. Math. Soc., 275:2 (1983), 599–609 | MR | Zbl
[3] Jockusch C. G. (Jr.), Shore R. A., “Pseudo jump operators. II: Transfinite iterations, hierarchies, and minimal covers”, J. Symb. Logic, 49:4 (1984), 1205–1236 | DOI | MR | Zbl
[4] Putnam H., “Trial and error predicates and the solution to a problem of Mostowski”, J. Symb. Logic, 30:1 (1965), 49–57 | DOI | MR | Zbl
[5] Ershov Y., “On a hierarchy of sets. I”, Algebra i Logika, 7:1 (1968), 47–73 (in Russian) | DOI | MR
[6] Ershov Y., “On a hierarchy of sets. II”, Algebra i Logika, 7:4 (1968), 15–47 (in Russian) | DOI | MR | Zbl
[7] Arslanov M. M., LaForte G. L., Slaman T. A., “Relative enumerability in the difference hierarchy”, J. Symb. Logic, 63:2 (1998), 411–420 | DOI | MR | Zbl
[8] Arslanov M. M., Lempp L., Shore R. A., “On isolating c. e. and isolated $d$-c. e. degrees”, Computability, enumerability, unsolvability, London Math. Soc. Lect. Note Series, 224, eds. S. B. Cooper, T. A. Slaman, S. S. Wainer, Cambridge Univ. Press, Cambridge, 1996, 61–80 | MR | Zbl
[9] Soare R. I., Stob M., “Relative recursive enumerability”, Proc. Herbrand Symposium, Logic Colloquium, 1981, 299–324 | MR
[10] Arslanov M. M., Lempp S., Shore R. A., “Interpolating $d$-r. e. and REA degrees between r. e. degrees”, Ann. Pure Appl. Logic, 78 (1995), 29–56 | DOI | MR
[11] Arslanov M. M., Cooper S. B., Li A., “There is no low maximal d. c. e. degree – Corrigendum”, Math. Logic Quart., 50:6 (2004), 628–636 | DOI | MR
[12] Arslanov M. M., “The Ershov Hierarchy”, Computability in Context, Computation and Logic in the Real World, eds. Cooper S. B., Sorbi A., Imperial College Press, World Scientific, 2011, 49–100 | DOI | MR | Zbl
[13] Arslanov M. M., Cooper S. B., Li A., “There is no low maximal d. c. e. degree”, Math. Logic Quart., 46:3 (2000), 409–416 | 3.0.CO;2-P class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[14] Soare R. I., Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1987, 437 pp. | DOI | MR