Spatial structure of HIV-enhancing heptapeptide Glu-Ile-Leu-Asn-His-Met-Lys in solution and in the complex with a model biological membrane
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 1, pp. 63-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The spatial structure of a synthetic fragment of SEVI – heptapeptide Glu-Ile-Leu-Asn-His-Met-Lys – in solution and in the complex with a model cell membrane surface (a micelle based on sodium dodecyl sulfate) was determined and described by $^1\mathrm H$ NMR spectroscopy and two-dimensional NMR (TOCSY, HSQC-HECADE, NOESY) spectroscopy. The complexation was confirmed by the change in the chemical shifts of the heptapeptide's $^1\mathrm H$ NMR spectra as well as by the signs and values of NOE effects in various media. A comparison of the spatial structure of heptapeptide Glu-Ile-Leu-Asn-His-Met-Lys in water solution and in the complex was made.
Keywords: oligopeptides, NMR $^1\mathrm H$ spectroscopy, TOCSY, NOESY.
Mots-clés : micelles
@article{UZKU_2012_154_1_a5,
     author = {I. Z. Rakhmatullin and D. S. Blokhin and O. V. Aganova and A. R. Yulmetov and A. V. Filippov and A. V. Aganov and V. V. Klochkov},
     title = {Spatial structure of {HIV-enhancing} heptapeptide {Glu-Ile-Leu-Asn-His-Met-Lys} in solution and in the complex with a~model biological membrane},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {63--73},
     year = {2012},
     volume = {154},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a5/}
}
TY  - JOUR
AU  - I. Z. Rakhmatullin
AU  - D. S. Blokhin
AU  - O. V. Aganova
AU  - A. R. Yulmetov
AU  - A. V. Filippov
AU  - A. V. Aganov
AU  - V. V. Klochkov
TI  - Spatial structure of HIV-enhancing heptapeptide Glu-Ile-Leu-Asn-His-Met-Lys in solution and in the complex with a model biological membrane
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2012
SP  - 63
EP  - 73
VL  - 154
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a5/
LA  - ru
ID  - UZKU_2012_154_1_a5
ER  - 
%0 Journal Article
%A I. Z. Rakhmatullin
%A D. S. Blokhin
%A O. V. Aganova
%A A. R. Yulmetov
%A A. V. Filippov
%A A. V. Aganov
%A V. V. Klochkov
%T Spatial structure of HIV-enhancing heptapeptide Glu-Ile-Leu-Asn-His-Met-Lys in solution and in the complex with a model biological membrane
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2012
%P 63-73
%V 154
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a5/
%G ru
%F UZKU_2012_154_1_a5
I. Z. Rakhmatullin; D. S. Blokhin; O. V. Aganova; A. R. Yulmetov; A. V. Filippov; A. V. Aganov; V. V. Klochkov. Spatial structure of HIV-enhancing heptapeptide Glu-Ile-Leu-Asn-His-Met-Lys in solution and in the complex with a model biological membrane. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 1, pp. 63-73. http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a5/

[1] Münch J., Rucker E., Standker L., Adermann K., Goffinet C., Schindler M., Wildum S., Chinnadurai R., Rajan D., Specht A., Gimenez-Gallego G., Sanchez P. C., Fowler D. M., Koulov A., Kelly J. W., Mothes W., Grivel J. C., Margolis L., Keppler O. T., Forssmann W. G., Kirchhoff F., “Semen-derived amyloid fibrils drastically enhance HIV infection”, Cell, 131:6 (2007), 1059–1071 | DOI

[2] Hassan M. I., Aijaz A., Ahmad F., “Structural and functional analysis of human prostatic acid phosphatase”, Expert Rev. Anticancer Ther., 10:7 (2010), 1055–1068 | DOI

[3] Nanga R. P., Brender J. R., Vivekanandan S., Popovych N., Ramamoorthy A., “NMR structure in a membrane environment reveals putative amyloidogenic regions of the SEVI precursor peptide PAP(248–286)”, J. Am. Chem. Soc., 131:49 (2009), 17972–17979 | DOI

[4] Roan N. R., Münch J., Arhel N., Mothes W., Neidleman J., Kobayashi A., Smith-McCune K., Kirchhoff F., Greene W. C., “The cationic properties of SEVI underlie its ability to enhance human immunodeficiency virus infection”, J. Virol., 83:1 (2009), 73–80 | DOI

[5] Merrifield R. B., “Solid phase peptide synthesis. I. The synthesis of a tetrapeptide”, J. Am. Chem. Soc., 85 (1963), 2149–2154 | DOI

[6] Jones J., Amino acid and peptide synthesis, Oxford Univ. Press, N.Y., 2002, 92 pp. | Zbl

[7] Filippov A., Synthesis and aggregation studies on amyloid oligomers of Alzheimer's Abeta peptides, University of Technology, Lulea, 2010, 26 pp.

[8] Alba E., Tjandra N., “NMR dipolar couplings for the structure determination of biopolymers in solution”, Prog. NMR Spectrosc., 40 (2002), 175–197 | DOI

[9] Ruckert M., Otting G., “Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments”, J. Am. Chem. Soc., 122:32 (2000), 7793–7797 | DOI

[10] Klochkov V. V., Klochkov A. V., Thiele C. M., Berger S., “A novel liquid crystalline system for partial alignment of polar organic molecules”, J. Magn. Reson., 179:1 (2006), 58–63 | DOI

[11] Kozminski W., Nanz D., “Sensitivity improvement and new acquisition scheme of heteronuclear active-coupling-pattern-tilting spectroscopy”, J. Magn. Reson., 142:2 (2000), 294–299 | DOI

[12] Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A., “NMRPipe: a multi-dimensional spectral processing system based on UNIX pipes”, J. Biomol. NMR, 6:3 (1995), 277–293 | DOI

[13] Coles M., Bicknell W., Watson A. A., Fairlie D. P., Craik D. J., “Solution structure of amyloid $\beta$-peptide(1-40) in a water-micelle environment. Is the membrane-spanning domain where we think it is?”, Biochemistry, 37:31 (1998), 11064–11077 | DOI

[14] Henry G. D., Sykes B. D., “Methods to study membrane protein structure in solution”, Methods Enzymol., 239 (1994), 515–535 | DOI

[15] Lee K. H., Fitton J. E., Wüthrich K., “Nuclear magnetic resonance investigation of the conformation of $\delta$-haemolysin bound to dodecylphosphocholine micelles”, Biochim. Biophys. Acta, 911:2 (1987), 144–153 | DOI

[16] Braun W., Wider G., Lee K. H., Wüthrich K., “Conformation of glucagon in a lipid-water interphase by $^1$H nuclear magnetic resonance”, J. Mol. Biol., 169:4 (1983), 921–948 | DOI

[17] Motta A., Pastore A., Goud N. A., Castiglione Morelli M. A., “Solution conformation of salmon calcitonin in sodium dodecyl sulfate micelles as determined by two-dimensional NMR and distance geometry calculations”, Biochemistry, 30:43 (1991), 10444–10450 | DOI

[18] Wang G., Keifer P. A., Peterkofsky A., “Solution structure of the N-terminal amphitropic domain of Escherichia coli glucose-specific enzyme IIA in membrane-mimetic micelles”, Protein Sci., 12:5 (2003), 1087–1096 | DOI

[19] Ernst R. R., Bodenhausen B., Wokaun A., Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Oxford Univ. Press, Oxford, 1987, 610 pp.

[20] Berger S., Braun S., 200 and More NMR Experiments, Wiley–VCH, Weinheim, 2004, 810 pp.

[21] Bremer J., Mendz G. L., Moore W. J., “Skewed exchange spectroscopy. Two-dimensional method for the measurement of cross relaxation in proton NMR spectroscopy”, J. Am. Chem. Soc., 106:17 (1984), 4691–4696 | DOI

[22] Blokhin D. S., Efimov S. V., Klochkov A. V., Yulmetov A. R., Filippov A. V., Aganov A. V., Klochkov V. V., “Prostranstvennoe stroenie dekapeptida Val-Ile-Lys-Lys-Ser-Thr-Ala-Leu-Leu-Gly v komplekse protein – mitselly dodetsilsulfata natriya”, Uchen. zap. Kazan. un-ta. Ser. Estestv. nauki, 153, no. 1, 2011, 59–70