The convergence of series of simple fractions in $L_p(\mathbb R)$.
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 1, pp. 208-213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The convergence of series of simple fractions in $L_p(\mathbb R)$ has been investigated. In particular, necessary and sufficient conditions for the convergence of series with coefficients $\frac{p_k}{t-z_k}$, where $p_k$ is a sequence of positive numbers, in $L_p(\mathbb R)$ have been obtained.
Mots-clés : simple fractions
Keywords: Hardy's inequality.
@article{UZKU_2012_154_1_a18,
     author = {A. V. Kayumova},
     title = {The convergence of series of simple fractions in $L_p(\mathbb R)$.},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {208--213},
     year = {2012},
     volume = {154},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a18/}
}
TY  - JOUR
AU  - A. V. Kayumova
TI  - The convergence of series of simple fractions in $L_p(\mathbb R)$.
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2012
SP  - 208
EP  - 213
VL  - 154
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a18/
LA  - ru
ID  - UZKU_2012_154_1_a18
ER  - 
%0 Journal Article
%A A. V. Kayumova
%T The convergence of series of simple fractions in $L_p(\mathbb R)$.
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2012
%P 208-213
%V 154
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a18/
%G ru
%F UZKU_2012_154_1_a18
A. V. Kayumova. The convergence of series of simple fractions in $L_p(\mathbb R)$.. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 1, pp. 208-213. http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a18/

[1] Kayumov I. R., “Skhodimost ryadov naiprosteishikh drobei v $L_p(\mathbb R)$”, Matem. sb., 202:10 (2011), 87–98 | DOI | MR | Zbl

[2] Protasov V. Yu., “Priblizhenie naiprosteishimi drobyami i preobrazovanie Gilberta”, Izv. RAN. Ser. matem., 73:2 (2009), 123–140 | DOI | MR | Zbl

[3] Danchenko V. I., “O skhodimosti naiprosteishikh drobei v $L_p(\mathbb R)$”, Matem. sb., 201:7 (2010), 53–66 | DOI | MR | Zbl

[4] Borodin P. A., “Priblizhenie naiprosteishimi drobyami na poluosi”, Matem. sb., 200:8 (2009), 25–44 | DOI | MR | Zbl

[5] Kayumov I. R., “Neobkhodimoe uslovie skhodimosti naiprosteishikh drobei v $L_p(\mathbb R)$”, Matem. zametki, 92:1 (2012), 149–152 | DOI | MR | Zbl

[6] Kayumov I. R., “Integralnye otsenki naiprosteishikh drobei”, Izv. vuzov. Matem., 2012, no. 4, 33–45 | Zbl

[7] Khardi G., Littlvud D., Polia G., Neravenstva, Izd-vo inostr. lit., M., 1948, 456 pp.