On some surfaces defined by conformal radius
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 1, pp. 179-188 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we study the properties of the conformal radius surface constructed over a unit disk or over the exterior of a unit disk for a domain with a convex boundary curve containing rectilinear part. We also discuss the properties of the conformal radius surface constructed over a half-plane for a domain with a polygonal boundary curve as well as the properties of the surface of the reconstructed conformal radius.
Keywords: conformal radius, surface of the conformal radius, coefficient of the hyperbolic metric.
Mots-clés : convex domain, convex polygon
@article{UZKU_2012_154_1_a15,
     author = {A. N. Akhmetova and A. V. Khmelnitskaya},
     title = {On some surfaces defined by conformal radius},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {179--188},
     year = {2012},
     volume = {154},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a15/}
}
TY  - JOUR
AU  - A. N. Akhmetova
AU  - A. V. Khmelnitskaya
TI  - On some surfaces defined by conformal radius
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2012
SP  - 179
EP  - 188
VL  - 154
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a15/
LA  - ru
ID  - UZKU_2012_154_1_a15
ER  - 
%0 Journal Article
%A A. N. Akhmetova
%A A. V. Khmelnitskaya
%T On some surfaces defined by conformal radius
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2012
%P 179-188
%V 154
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a15/
%G ru
%F UZKU_2012_154_1_a15
A. N. Akhmetova; A. V. Khmelnitskaya. On some surfaces defined by conformal radius. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 1, pp. 179-188. http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a15/

[1] Haegi H. R., “Extremalprobleme und Ungleichungen konformer Gebietsgrössen”, Compositio Mathematica, 8 (1951), 81–111 | MR

[2] Aksentev L. A., Akhmetova A. N., Khmelnitskaya A. V., “Svoistva poverkhnostei konformnogo radiusa dlya integralov Kristoffelya–Shvartsa”, Materialy Sedmoi mezhdunarod. kazan. shk.-konf., Izd-vo Kazan. matem. o-va, Kazan, 2005, 10–11

[3] Aksentev L. A., Akhmetova A. N., Khmelnitskaya A. V., “O vypuklosti poverkhnostei, opredelyaemykh konformnym radiusom ploskoi oblasti”, Izv. vuzov. Matem., 2007, no. 4, 10–20 | MR | Zbl

[4] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR | Zbl

[5] Kheiman V. K., Mnogolistnye funktsii, Izd-vo inostr. lit., M., 1960, 180 pp. | MR