Flow past a profile of a given shape in the Chaplygin gas
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 1, pp. 122-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, the problem of a subsonic continuous flow past a profile of a given shape is investigated. The problem is reduced to a nonlinear Villa-type integral equation, which after discretization is solved by Newton's method. It is shown that the velocity distributions computed using the Chaplygin gas model, the Karman–Tsien formula and the CFD Fluent package are very close to each other in the subsonic range of Mach numbers.
Keywords: subsonic flows, Chaplygin equations, Chaplygin gas, discretization, Newton's method.
Mots-clés : Villa's equation
@article{UZKU_2012_154_1_a10,
     author = {E. M. Kotlyar and D. V. Maklakov},
     title = {Flow past a~profile of a~given shape in the {Chaplygin} gas},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {122--133},
     year = {2012},
     volume = {154},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a10/}
}
TY  - JOUR
AU  - E. M. Kotlyar
AU  - D. V. Maklakov
TI  - Flow past a profile of a given shape in the Chaplygin gas
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2012
SP  - 122
EP  - 133
VL  - 154
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a10/
LA  - ru
ID  - UZKU_2012_154_1_a10
ER  - 
%0 Journal Article
%A E. M. Kotlyar
%A D. V. Maklakov
%T Flow past a profile of a given shape in the Chaplygin gas
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2012
%P 122-133
%V 154
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a10/
%G ru
%F UZKU_2012_154_1_a10
E. M. Kotlyar; D. V. Maklakov. Flow past a profile of a given shape in the Chaplygin gas. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 1, pp. 122-133. http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a10/

[1] Chaplygin S. A., “O gazovykh struyakh”: Chaplygin S. A., Poln. sobr. soch., v. 2, AN SSSR, L., 1933, 3–90

[2] Gurevich M. I., Teoriya strui idealnoi zhidkosti, Nauka, M., 1979, 536 pp.

[3] Sungurtsev Yu. V., Ploskie struinye techeniya gaza, Izd-vo Mosk. un-ta, M., 1989, 256 pp.

[4] Tumashev G. G., “Nakhozhdenie formy profilya po zadannomu raspredeleniyu skorosti s uchetom szhimaemosti zhidkosti”, Izv. Kazan. fiz.-matem. o-va. Ser. 2, 13 (1945), 127–132

[5] Tumashev G. G., “Opredelenie formy granits potoka zhidkosti po zadannomu raspredeleniyu skorosti ili davleniya”, Uchen. zap. Kazan. un-ta, 112, no. 3, 1952, 3–41

[6] Tumashev G. G., Nuzhin M. T., Obratnye kraevye zadachi i ikh prilozheniya, Izd-vo Kazan. un-ta, Kazan, 1965, 333 pp. | MR

[7] Woods L. C., The theory of subsonic plane flow, Cambridge Univ. Press, Cambridge, 1961, 594 pp. | MR | Zbl

[8] Sedov L. I., Ploskie zadachi gidrodinamiki i aerodinamiki, Nauka, M., 1980, 448 pp. | MR | Zbl

[9] Daripa P. K., Sirovich L., “Exact and approximate gas dynamics using the tangent gas”, J. Comp. Phys., 62:2 (1986), 400–413 | DOI | MR | Zbl

[10] Elizarov A. M., Ilinskii N. B., Potashev A. V., Obratnye kraevye zadachi aerogidrodinamiki: teoriya i metody proektirovaniya i optimizatsii formy krylovykh profilei, Fizmatlit, M., 1994, 436 pp. | MR | Zbl

[11] Stepanov G. Yu., Gidrodinamika reshetok turbomashin, Fizmatgiz, M., 1962, 512 pp.

[12] Elizarov A. M., Kasimov A. R., Maklakov D. V., Zadachi optimizatsii formy v aerogidrodinamike, Fizmatlit, M., 2008, 18–29

[13] Maklakov D. V., Nelineinye zadachi gidrodinamiki potentsialnykh techenii so svobodnymi granitsami, Yanus-K, M., 1997, 281 pp. | Zbl

[14] de Boor C., A Practical Guide to Splines, Springer-Verlag, Berlin–Heidelberg–N.Y., 1978, 346 pp. | MR | Zbl