High resolution NMR in biofluids and tissues
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 1, pp. 23-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Bodyfluids are complicated mixtures and each component has its own NMR spectrum. The total spectrum may contain several thousand lines, but with the help of modern homo- and heteronuclear multidimensional NMR methods all lines can be assigned and a metabolite data base can be created. A principal component analysis of all spectra makes it possible to reveal deviation from the normal state. Spectra corresponding to this deviation then have to be evaluated more carefully using spectra simulation and data base programs. Tissues are heterogenous samples and in normal NMR spectra exhibit comparably broad lines due to a residual dipole coupling. Magic angle spinning (MAS) averages out these interactions leading to well resolved spectra which allow the identification of various metabolites. Metabolic changes due to malignant diseases can be detected, which is the basis of NMR-histology, a new discipline that has already been applied in various hospitals.
Keywords: NMR, magic angle spinning, NMR-histology, oncology, tissues, biofluids.
@article{UZKU_2012_154_1_a1,
     author = {U. Eichhoff and M. Spraul and M. Piotto},
     title = {High resolution {NMR} in biofluids and tissues},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {23--32},
     year = {2012},
     volume = {154},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a1/}
}
TY  - JOUR
AU  - U. Eichhoff
AU  - M. Spraul
AU  - M. Piotto
TI  - High resolution NMR in biofluids and tissues
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2012
SP  - 23
EP  - 32
VL  - 154
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a1/
LA  - ru
ID  - UZKU_2012_154_1_a1
ER  - 
%0 Journal Article
%A U. Eichhoff
%A M. Spraul
%A M. Piotto
%T High resolution NMR in biofluids and tissues
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2012
%P 23-32
%V 154
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a1/
%G ru
%F UZKU_2012_154_1_a1
U. Eichhoff; M. Spraul; M. Piotto. High resolution NMR in biofluids and tissues. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 1, pp. 23-32. http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a1/

[1] Lindon J. C., Holmes E., Nicholson J. K., “Toxicological applications of magnetic resonance”, Progress NMR Spectrosc., 45:1–2 (2004), 109–143 | DOI

[2] Holmes E., Nicholls A. W., Lindon J. C., Ramos S., Spraul M., Neidig P., Connor S. C., Connelly J., Damment S. J., Haselden J., Nicholson J. K., “Development of a model for classification of toxin-induced lesions using $^1$H NMR spectroscopy of urine combined with pattern recognition”, NMR Biomed., 11:4–5 (1998), 235–244 | 3.0.CO;2-V class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[3] Waters N. J., Holmes E., Williams A., Waterfield C. J., Farrant R. D., Nicholson J. K., “NMR and pattern recognition studies on the time-related metabolic effects of $\alpha$-naphthylisothiocyanate on liver, urine, and plasma in the rat: an integrative metabonomic approach”, Chem. Res. Toxicol., 14:10 (2001), 1401–1412 | DOI

[4] Nicholson J. K., Foxall P. J., Spraul M., Farrant R. D., Lindon J. C., “750 MHz $^1$H and $^1$H–$^{13}$C NMR spectroscopy of human blood plasma”, Anal. Chem., 67:5 (1995), 793–811 | DOI

[5] Zuppi C., Messana I., Forni F., Rossi C., Pennacchietti L., Ferrari F., Giardina B., “$^1$H NMR spectra of normal urines: reference ranges of the major metabolites”, Clin. Chim. Acta, 265:1 (1997), 85–97 | DOI

[6] Spraul M., Hofmann M., Ackermann M., Shockcor J. P., Lindon J. C., Nicholls A. W., Nicholson J. K., Damment S. J. P., Haselden J. N., “Flow injection proton nuclear magnetic resonance spectroscopy combined with pattern recognition methods: implications for rapid structural studies and high throughput biochemical screening”, Anal. Commun., 34:11 (1997), 339–341 | DOI

[7] Humpfer E., Spraul M., Nicholls A. W., Nicholson J. K., Lindon J. C., “Direct observation of resolved intracellular and extracellular water signals in intact human red blood cells using $^1$H MAS NMR spectroscopy”, Magn. Reson. Med., 38:2 (1997), 334–336 | DOI

[8] Garrod S., Humpfer E., Connor S. C., Connelly J. C., Spraul M., Nicholson J. K., Holmes E., “High-resolution $^1$H NMR and magic angle spinning NMR spectroscopic investigation of the biochemical effects of 2-bromoethanamine in intact renal and hepatic tissue”, Magn. Reson. Med., 45:5 (2001), 781–790 | DOI

[9] Bollard M. E., Garrod S., Holmes E., Lindon J. C., Humpfer E., Spraul M., Nicholson J. K., “High-resolution $^1$H and $^1$H–$^{13}$C magic angle spinning NMR spectroscopy of rat liver”, Magn. Reson. Med., 44:2 (2000), 201–207 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[10] Spraul M., “High-Resolution NMR and Mixture Analysis: Medical Applications”, Bruker Report., NMR Applications, 1 (1991), 28–32

[11] Albert K., Dachtler M., Glaser T., Händel H., Lacker T., Schlotterbeck G., Strohschein S., Tseng L.-H., Braumann U., “On-line coupling of separation techniques to NMR”, J. High Resol. Chromatrogr., 22:3 (1999), 135–143 | 3.0.CO;2-Z class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[12] Spraul M., Hofmann M., Lindon J. C., Nicholson J. K., Wilson I. D., “Liquid Chromatography Coupled with high-field proton nuclear magnetic resonance spectroscopy: current status and future prospects”, Anal. Proc., 30:10 (1993), 390–392 | DOI

[13] Holmes E., Foxall P. J., Spraul M., Farrant R. D., Nicholson J. K., Lindon J. C., “750 MHz $^1$H NMR spectroscopy characterisation of the complex metabolic pattern of urine from patients with inborn errors of metabolism: 2-hydroxyglutaric aciduria and maple syrup urine disease”, J. Pharmaceutical and Biomedical Analysis, 15:11 (1997), 1647–1659 | DOI

[14] Constantinou M. A., Papakonstantinou E., Benaki D., Spraul M., Shulpis K., Koupparis M. A., Mikros E., “Application of nuclear magnetic resonance spectroscopy combined with principal component analysis in detecting inborn errors of metabolism using blood spots: a metabonomic approach”, Anal. Chim. Acta, 511:2 (2004), 303–312 | DOI

[15] Engelke U. F., Liebrand-van Sambeek M. L., de Jong J. G., Leroy J. G., Morava E., Smeitink J. A., Wevers R. A., “N-acetylated metabolites in urine: proton nuclear magnetic resonance spectroscopic study on patients with inborn errors of metabolism”, Clin. Chem., 50:1 (2004), 58–66 | DOI

[16] Constantinou M. A., Papakonstantinou E., Spraul M., Sevastiadou S., Costalos C., Koupparis M. A., Shulpis K., Tsantili-Kakoulidou A., Mikros E., “$^1$H NMR-based metabonomics for the diagnosis of inborn errors of metabolism in urine”, Anal. Chim. Acta, 542:2 (2005), 169–177 | DOI

[17] Bayet-Robert M., Loiseau D., Rio P., Demidem A., Barthomeuf C., Stepien G., Morvan D., “Quantitative two-dimensional HRMAS $^1$H-NMR spectroscopy-based metabolite profiling of human cancer cell lines and response to chemotherapy”, Magn. Reson. Med., 63:5 (2010), 1172–1183 | DOI

[18] Moka D., Vorreuther R., Schicha H., Spraul M., Humpfer E., Lipinski M., Foxall P. J., Nicholson J. K., Lindon J. C., “Biochemical Classification of kidney carcinoma biopsy samples using magic-angle-spinning $^1$H nuclear magnetic resonance”, J. Pharm. Biomed. Anal., 17:1 (1998), 125–132 | DOI

[19] Tate A. R., Foxall P. J., Holmes E., Moka D., Spraul M., Nicholson J. K., Lindon J. C., “Distinction between normal and renal cell carcinoma kidney cortical biopsy samples using pattern recognition of $^1$H magic angle spinning (MAS) NMR spectra”, NMR in Biomedicine, 13:2 (2000), 64–71 | 3.0.CO;2-X class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[20] Sitter B., Sonnewald U., Spraul M., Fjösne H. E., Gribbestad I. S., “High-resolution magic angle spinning MRS of breast cancer tissue”, NMR Biomed., 15:5 (2002), 327–337 | DOI

[21] Sitter B., Lundgren S., Bathen T. F., Halgunset J., Fjösne H. E., Gribbestad I. S., “Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters”, NMR Biomed., 19:1 (2006), 30–40 | DOI

[22] Tessem M.-B., Swanson M. G., Keshari K. R., Albers M. J., Joun D., Tabatabai Z. L., Simko J. P., Shinohara K., Nelson S. J., Vigneron D. B., Gribbestad I. S., Kurhanewwicz J., “Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using $^1$H-HR-MAS of biopsy tissues”, Magn. Reson. Med., 60:3 (2008), 510–516 | DOI

[23] Swanson M. G., Vigneron D. B., Tabatabai Z. L., Males R. G., Schmitt L., Carroll P. R., James J. K., Hurd R. E., Kurhanewicz J., “Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues”, Magn. Reson. Med., 50:5 (2003), 944–954 | DOI

[24] Wu C.-L., Taylor J. L., He W., Zepeda A. G., Halpern E. F., Bielecki A., Gonzalez R. G., Cheng L. L., “Proton high-resolution magic angle spinning NMR analysis of fresh and previously frozen tissue of human prostate”, Magn. Reson. Med., 50:6 (2003), 1307–1311 | DOI

[25] Kelm B. M., Menze B. H., Zechmann C. M., Baudendistel K. T., Hamprecht F. A., “Automated estimation of tumor probability in prostate magnetic resonance spectroscopic imaging: pattern recognition vs quantification”, Magn. Reson. Med., 57:1 (2007), 150–159 | DOI

[26] Piotto M., Moussalieh F.-M., Dillmann B., Imperiale A., Neuville A., Brigand C., Bellocq J.-P., Elbayed K., Namer I. J., “Metabolic characterization of primary human colorectal cancers using high resolution magic angle spinning $^1$H magnetic resonance spectroscopy”, Metabolomics, 5:3 (2009), 292–301 | DOI

[27] Erb G., Elbayed K., Piotto M., Raya J., Neuville A., Mohr M., Maitrot D., Kehrli P., Namer I. J., “Toward improved grading of malignancy in oligodendrogliomas using metabolomics”, Magn. Reson. Med., 59:5 (2008), 959–965 | DOI

[28] Opstad K. S., Bell B. A., Griffiths J. R., Howe F. A., “Toward accurate quantification of metabolites, lipids, and macromolecules in HRMAS spectra of human brain tumor biopsies using LCModel”, Magn. Reson. Med., 60:5 (2008), 1237–1242 | DOI

[29] Martinez-Bisbal M. C., Marti-Bonmati L., Piquer J., Revert A., Ferrer P., Llacer J. L., Piotto M., Assemat O., Celda B., “$^1$H and $^{13}$C HR-MAS spectroscopy of intact biopsy samples ex vivo and in vivo 1H MRS study of human high grade gliomas”, NMR Biomed., 17:4 (2004), 191–205 | DOI

[30] Imperiale A., Elbayed K., Moussallieh F.-M., Neuville A., Piotto M., Bellocq J.-P., Lutz P., Namer I.-J., “Metabolic Pattern of Childhood Neuroblastoma obtained by $^1$H-High-Resolution Magic Angle Spinning (HRMAS) NMR Spectroscopy”, Pediatr. Blood Cancer, 56:1 (2011), 24–34 | DOI