Evolution of nuclear magnetic shielding theory: from molecule in the gas phase to large molecular systems
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 1, pp. 5-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper considers the current state of the theory and non-empirical methods of nuclear magnetic shielding constants calculation for molecules in the gas phase and in condensed media (solutions and solids), i.e. discrete supermolecular model, continuum models in different approaches, mixed models, methods of quantum mechanics/molecular mechanics combined with the methods of molecular dynamics. The results of calculations of magnetic shielding constants of phosphorous nuclei in trimethylbetaine molecules in acetone and dimethylsulfoxide solvents using QM/MM, ONIOM and molecular dynamics methods are given as an example.
Keywords: nuclear magnetic shielding, chemical shifts, density functional theory, continuum models, polarizable continuum model, molecular dynamics, solid.
Mots-clés : ONIOM
@article{UZKU_2012_154_1_a0,
     author = {R. M. Aminova and A. V. Aganov and E. R. Martynchuk},
     title = {Evolution of nuclear magnetic shielding theory: from molecule in the gas phase to large molecular systems},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {5--22},
     year = {2012},
     volume = {154},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a0/}
}
TY  - JOUR
AU  - R. M. Aminova
AU  - A. V. Aganov
AU  - E. R. Martynchuk
TI  - Evolution of nuclear magnetic shielding theory: from molecule in the gas phase to large molecular systems
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2012
SP  - 5
EP  - 22
VL  - 154
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a0/
LA  - ru
ID  - UZKU_2012_154_1_a0
ER  - 
%0 Journal Article
%A R. M. Aminova
%A A. V. Aganov
%A E. R. Martynchuk
%T Evolution of nuclear magnetic shielding theory: from molecule in the gas phase to large molecular systems
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2012
%P 5-22
%V 154
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a0/
%G ru
%F UZKU_2012_154_1_a0
R. M. Aminova; A. V. Aganov; E. R. Martynchuk. Evolution of nuclear magnetic shielding theory: from molecule in the gas phase to large molecular systems. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 1, pp. 5-22. http://geodesic.mathdoc.fr/item/UZKU_2012_154_1_a0/

[1] Zhang W., Sato T., Smith S. O., “NMR spectroscopy of basic/aromatic amino acid clusters in membrane proteins”, Progr. Nucl. Magn. Reson. Spectrosc., 48:4 (2006), 183–199 | DOI

[2] Wuthrich K., NMR in structural biology, World Scientific Pub. Co. Inc., 1995, 760 pp.

[3] Besley N. A., Noble A., “NMR chemical shifts of molecules encapsulated in single walled carbon nanotubes”, J. Chem. Phys., 128:10 (2008), 101102-1–101102-4 | DOI

[4] Nguyen T.-Q., Martel R., Avouris P., Bushey M. L., Brus L., Nuckolls C., “Molecular interactions in one-dimensional organic nanostructures”, J. Am. Chem. Soc., 126:16 (2004), 5234–5242 | DOI

[5] Rebane T. K., “Magnitnye svoistva molekul s zamknutymi obolochkami”, Sovremennye problemy kvantovoi khimii (stroenie i svoistva molekul), ed. M. G. Veselov, Nauka, L., 1986, 165–210

[6] O'Reilly D. E., “Chemical shift calculations”, Progr. Nucl. Magn. Reson. Spectrosc., 2 (1967), 1–61 | DOI

[7] Aminova R. M., “Variatsionnyi metod rascheta lineinogo po elektricheskomu polyu effekta na velichinu konstanty yadernogo magnitnogo ekranirovaniya”, Teoret. i eksper. khimiya, 5:2 (1969), 264–267

[8] Aminova R. M., Gubaidullina R. Z., “Neempiricheskii raschet lineinoi variatsii v elektricheskom pole konstanty magnitnogo ekranirovaniya protona v svyazyakh S–N”, Zhurn. strukt. khimii, 10:2 (1969), 253–258

[9] Aminova R. M., “Calculation of nuclear magnetic resonance shielding in diatomic molecules with LCAO MO functions and gaussian expansion”, Mol. Phys., 37:1 (1979), 319–323 | DOI

[10] Johnston J. C., Luliucci R. J., Facelli J. C., Fitzgerald G., Mueller K. T., “Intermolecular shielding contributions studied by modeling the $^{13}$C chemical-shift tensors of organic single crystals with plane waves”, J. Chem. Phys., 131:14 (2009), 144503–144510 | DOI

[11] Ramsey N. F., “Magnetic shielding of nuclei in molecules”, Phys. Rev., 78:6 (1950), 699–703 | DOI | MR | Zbl

[12] Kolker H. J., Karplus M., “Theory of nuclear magnetic shielding in diatomic molecules”, J. Chem. Phys., 41:5 (1964), 1259–1266 | DOI

[13] Langhoff P. W., Karplus M., Hurst R. P., “Approximations to Hartree–Fock perturbation theory”, J. Chem. Phys., 44:2 (1966), 505–514 | DOI | MR

[14] Aminova R. M., “Gauge-invariant atomic orbital calculations of intramolecular chemical shifts due to localized molecular fragments”, J. Mol. Structure (Theochem), 183:3–4 (1989), 215–222 | DOI

[15] Aminova R. M., Aganov A. V., Zakirova G. K., “Neempiricheskie raschety vliyaniya molekulyarnykh fragmentov na protonnye khimicheskie sdvigi”, Teor. i eksper. khimiya, 26:2 (1990), 149–157

[16] Aminova R. M., Aganov A. V., Zakirova G. K., Arbuzov B. A., “Protonnye khimicheskie sdvigi i prostranstvennaya struktura semichlenykh 1,3,2-dioksa-geterotsiklov i ikh shestichlennykh geteroanalogov”, Izv. AN SSSR. Ser. khim., 3 (1988), 537–544

[17] London F., “Quantum theory of interatomic currents in aromatic compounds”, J. Phys. Radium, 8:10 (1937), 397–409 | DOI

[18] Pople J. A., “Molecular-orbital theory of diamagnetism. I. An approximate LCAO scheme”, J. Chem. Phys., 37:1 (1962), 53–59 | DOI

[19] Landau L. D., Livshits E. M., Kvantovaya mekhanika, Nauka, M., 1963, 702 pp.

[20] Hansen A. E., Bouman T. D., “Localized orbital/local origin method for calculation and analysis of NMR shieldings. Applications to $^{13}$C shielding tensors”, J. Chem. Phys., 82:11 (1985), 5035–5047 | DOI

[21] Stevens R. M., Pitzer R. M., Lipscomb W. N., “Perturbed Hartree–Fock calculations. I. Magnetic susceptibility and shielding in the LiH molecule”, J. Chem. Phys., 38:2 (1963), 550–560 | DOI

[22] Holler R., Lischka H., “Coupled-Hartree–Fock calculations of susceptibilities and magnetic shielding constants. II. The second row hybrids $\mathrm{NaH, MgH_2, AlH_3, SiH_4, PH_3, H_2S}$ and $\mathrm{HCl}$”, Mol. Phys., 41:5 (1980), 1041–1050 | DOI

[23] Ditchfield R., “Self-consistent perturbation theory of diamagnetism. I. A gauge-invariant LCAO method for NMR chemical shifts”, Mol. Phys., 27:4 (1974), 789–807 | DOI

[24] Wolinski K., Hilton J. F., Pulay P., “Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations”, J. Am. Chem. Soc., 112 (1990), 8251–8260 | DOI

[25] Kutzelnigg W., “Theory of magnetic susceptibilities and NMR chemical shifts in terms of localized quantities”, Isr. J. Chem., 19 (1980), 193–200 | DOI

[26] Geertsen J., “A solution of the gauge-origin problem for the magnetic shielding constant”, Chem. Phys. Lett., 179:5–6 (1991), 479–482 | DOI

[27] Keith T. A., Bader R. F. W., “Calculation of magnetic response properties using a continuous set of gauge transformations”, Chem. Phys. Lett., 210:1–3 (1993), 223–231 | DOI

[28] Coriani S., Lazzeretti P., Malagoli M., Zanasi R., “On CHF calculations of second-order magnetic properties using the method of continuous transformation of origin of the current density”, Theoret. Chim. Acta, 89:2–3 (1994), 181–192 | DOI

[29] Zanasi R., Lazzertti P., Malagoli M., Piccinini F., “Molecular magnetic properties within continuous transformations of origin of the current density”, J. Chem. Phys., 102:18 (1995), 7150–7157 | DOI

[30] Rebane T. K., “Metod varirovaniya vektornogo potentsiala v raschetakh magnitnykh svoistv molekul”, Vestn. Leningr. un-ta, 1964, no. 22, 26–36

[31] Oddershede J., Geertsen J., “Nuclear magnetic shieldings and spin rotation constants of HF and N$_2$”, J. Chem. Phys., 92:10 (1990), 6036–6042 | DOI

[32] Ruud K., Helgaker T., Kobayashi R., Jorgensen P., Bak K. L., Jensen H. J. Aa., “Multiconfigurational self-consistent field calculations of nuclear shieldings using London atomic orbitals”, J. Chem. Phys., 100:11 (1994), 8178–8185 | DOI

[33] Cui Q., Karplus M., “Molecular Properties from combined QM/MM Methods. 2. Chemical shifts in large molecules”, J. Phys. Chem. B, 104:15 (2000), 3721–3743 | DOI

[34] Gauss J., Stanton J. F. p Gauge-invariant calculation of nuclear magnetic shielding constants at the coupled-cluster singles and doubles level, J. Chem. Phys., 102:1 (1995), 251–253 | DOI

[35] Gauss J., Stanton J. F., “Electron-correlated approaches for the calculation of NMR chemical shifts”, Advances in Chemical Physics, eds. Prigogine I., Rice S. A., John Wiley Sons, 2002, 366–422

[36] Kaupp M., Malkin V. G., Malkina O. L., “NMR of transition metal compounds”, Encyclopedia of Computational Chemistry, ed. P. v. R. Schleyer, John Wiley Sons Intersci., Chichester, 1998, 1857–1866

[37] Buhl M., Kaupp M., Malkina O. L., Malkin V. G., “The DFT route to NMR chemical shifts”, J. Comp. Chem., 20:1 (1999), 91–105 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[38] Hohenberg P., Kohn W., “Inhomogeneous Electron Gas”, Phys. Rev. (2), 136:3 (1964), B864–B871 | DOI | MR

[39] Van Wullen C., “Density functional calculation of nuclear magnetic resonance chemical shifts”, J. Chem. Phys., 102:7 (1995), 2806–2811 | DOI

[40] Lee A. M., Handy N. C., Colwell S. M., “The density functional calculation of nuclear shielding constants using London atomic orbitals”, J. Chem. Phys., 103:23 (1995), 10095–10109 | DOI

[41] Tomasi J., Mennucci B., Cammi R., “Quantum mechanical continuum solvation models”, Chem. Rev., 105:8 (2005), 2999–3093 | DOI

[42] Bagno A., Rastrelli F., Saielli G., “NMR techniques for the investigation of solvation phenomena and noncovalent interactions”, Progr. Nucl. Magn. Reson. Spectrosc., 47:1–2 (2005), 41–93 | DOI

[43] Ribeiro R. F., Marenich A. V., Cramer C. J., Truhlar D. G., “Solvent dependence of $^{14}$N Nuclear magnetic resonance chemical shielding constants as a test of the accuracy of the computed polarization of solute electron densities by the solvent”, J. Chem. Theory Comput., 5:9 (2009), 2284–2300 | DOI

[44] Kongsted J., Nielsen C. B., Mikkelsen K. V., Christiansen O., Ruud K., “Nuclear magnetic shielding constants of liquid water: insights from hybrid quantum mechanics/molecular mechanics models”, J. Chem. Phys., 126:3 (2007), 034510-1–034510-8 | DOI

[45] Gester R. M., Georg H. C., Canuto S., Caputo M. C., Provasi P. F., “NMR chemical shielding and spin-spin coupling constants of liquid NH$_3$: A systematic investigation using the sequential QM/MM method”, J. Phys. Chem. A, 113:52 (2009), 14936–14942 | DOI

[46] Wang B., Merz K. M., “A fast QM/MM (Quantum Mechanical/Molecular Mechanical) approach to calculate nuclear magnetic resonance chemical shifts for macromolecules”, J. Chem. Theory Comput., 2:1 (2006), 209–215 | DOI

[47] Karadakov P. B., Morokuma K., “ONIOM as an efficient tool for calculating NMR chemical shielding constants in large molecules”, Chem. Phys. Lett., 317 (2000), 589–596 | DOI

[48] Karadakov P. B., “Ab Initio calculation of NMR shielding constants”, Modern Magn. Resonance, ed. G. A. Webb, Springer, 2006, 63–70 | DOI

[49] Sebastiani D., Rothlisberger U., “Nuclear Magnetic Resonance Chemical Shifts from Hybrid DFT QM/MM Calculations”, J. Phys. Chem. B, 108:9 (2004), 2807–2815 | DOI

[50] Tschumper G. S., Morokuma K., “Gauging the applicability of ONIOM (MO/MO) methods to weak chemical interactions in large systems: hydrogen bonding in alcohol dimers”, J. Mol. Struct. (Theochem), 592:1–2 (2002), 137–147 | DOI

[51] Baisupova E. R., Aminova R. M., “Raschety prostranstvennoi struktury i konstant magnitnogo ekranirovaniya yader $^{31}$R molekulyarnykh nanorazmernykh klasterov kvantovokhimicheskimi metodami”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 151, no. 1, 2009, 24–32

[52] Aminova R. M., Baisupova E. R., Aganov A. V., “Calculations of $^{31}$P Magnetic shielding constants of derivatives of betaine and phosphine molecules dissolved in different solvents by using supermolecular model and combined methods of quantum chemistry and molecular mechanics”, Appl. Magn. Reson., 40:2 (2011), 147–170 | DOI

[53] Aidas K., Mogelhoj A., Kjaer H., Nielsen C. B., Mikkelsen K. V., Ruud K., Christiansen O., Kongsted J., “Solvent effects on NMR isotropic shielding constants. A comparison between explicit polarizable discrete and continuum approaches”, J. Phys. Chem., 111:20 (2007), 4199–4210 | DOI

[54] Brancato G., Barone V., Rega N., “Theoretical modelling of spectroscopic properties of molecules in solution: toward an effective dynamical discrete/continuum approach”, Theor. Chim. Acta, 117:5–6 (2007), 1001–1015 | DOI

[55] Mennucci B., Martinez J. M., Tomasi J., “Solvent effects on Nuclear shielding: continuum or discrete solvation models to treat hydrogen bond and polarity effects?”, J. Phys. Chem. A, 105:30 (2001), 7287–7296 | DOI

[56] Komin S., Gossens C., Tavernelli I., Rothlisberger U., Sebastiani D., “NMR solvent shofts of adenine in aqueous solution from hybrid QM/MM molecular dynamics simulations”, J. Phys. Chem. B, 111:19 (2007), 5225–5232 | DOI

[57] Pavone M., Brancato G., Morelli G. Barone V., “Spectroscopic properties in the liquid phase: combining high-level ab initio calculations and classical molecular dynamics”, Chem. Phys. Chem., 7:1 (2006), 148–156 | DOI

[58] Robinson M., Haynes P. D., “Dynamical effects in ab initio NMR calculations: classical force fields fitted to quantum forces”, J. Chem. Phys., 133:8 (2010), 084109-1–084109-9 | DOI

[59] Car R., Parrinello M., “Unified approach for molecular dynamics and density-functional theory”, Phys. Rev. Lett., 55:22 (1985), 2471–2475 | DOI

[60] Hess B., Kutzner C., van der Spoel D., Lindahl E., “GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation”, J. Chem. Theory Comput., 4:3 (2008), 435–447 | DOI

[61] Jorgensen W. L., Tirado-Rives J., “The OPLS force field for proteins. Energy minimizations for crystals of cyclic peptides and crambin”, J. Am. Chem. Soc., 110 (1988), 1657–1666 | DOI

[62] Jorgensen W. L., Maxwell D. S., Tirado-Rives J., “Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids”, J. Am. Chem. Soc., 118 (1996), 11225–11236 | DOI

[63] Allen M., Tildesley D., Computer simulations of liquids, Clarendon Press, Oxford, U. K., 1989, 408 pp.

[64] Mauri F., Pfrommer B. G., Louie S. G., “Ab initio theory of NMR chemical shifts in solids and liquids”, Phys. Rev. Lett., 77:26 (1996), 5300–5303 | DOI

[65] Sebastiani D., Parrinello M., “A new ab-initio approach for NMR chemical shifts in periodic systems”, J. Phys. Chem. A, 105 (2001), 1951–1958 | DOI

[66] Pickard C. J., Mauri F., “All-electron magnetic response with pseudopotentials: NMR chemical shifts”, Phys. Rev. B, 63:24 (2001), 245101-1–245101-13 | DOI

[67] Sebastiani D., Goward G., Schnell I., Parrinello M., “NMR chemical shifts in periodic systems from first principles”, Comp. Phys. Commun., 147 (2002), 707–710 | DOI | Zbl