Lower estimates for the equivalence constant of the torsional rigidity and the moment of inertia about a boundary
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 4, pp. 59-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we consider the problem of approximate computation of the torsional rigidity coefficient for simply-connected domains. An approach to the distance function determination is defined; a numerical method for calculating the moment of inertia about a boundary is proposed. Using a numerical experiment, the estimate for the equivalence constant of the torsional rigidity coefficient and the moment of inertia about a boundary is improved.
Keywords: torsional rigidity, moment of inertia about a boundary, conjugate gradients method, Dirichlet problem.
@article{UZKU_2011_153_4_a5,
     author = {D. A. Abramov},
     title = {Lower estimates for the equivalence constant of the torsional rigidity and the moment of inertia about a~boundary},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {59--66},
     year = {2011},
     volume = {153},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a5/}
}
TY  - JOUR
AU  - D. A. Abramov
TI  - Lower estimates for the equivalence constant of the torsional rigidity and the moment of inertia about a boundary
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 59
EP  - 66
VL  - 153
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a5/
LA  - ru
ID  - UZKU_2011_153_4_a5
ER  - 
%0 Journal Article
%A D. A. Abramov
%T Lower estimates for the equivalence constant of the torsional rigidity and the moment of inertia about a boundary
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 59-66
%V 153
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a5/
%G ru
%F UZKU_2011_153_4_a5
D. A. Abramov. Lower estimates for the equivalence constant of the torsional rigidity and the moment of inertia about a boundary. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 4, pp. 59-66. http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a5/

[1] Coulomb C. A., “Recherches théoriques et expérimentales sur la force de torsion, et sur l'élasticité de fils de métal”, Mem. de l'Acad. de Sci., 1784, 229–269

[2] Polia G., Segë G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Nauka, M., 1989, 336 pp.

[3] Arutyunyan N. Kh., Abramyan B. L., Kruchenie uprugikh tekh, GIFML, M., 1963, 688 pp.

[4] Sen-Venan B., Memuar o kruchenii prizm. Memuar ob izgibe prizm, GIFML, M., 1961, 519 pp.

[5] Avkhadiev F. G., “Reshenie obobschennoi zadachi Sen-Venana”, Matem. sb., 189:12 (1998), 3–12 | DOI | MR | Zbl

[6] Giniyatova D. Kh., Salakhudinov R. G., “Evklidovyi moment inertsii i modifitsirovannaya zhestkost krucheniya”, Trudy matem. tsentra im. N. I. Lobachevskogo, 35, Kazan. matem. o-vo, Kazan, 2007, 74–75

[7] Segerlind L., Primenenie metoda konechnykh elementov, Mir, M., 1979, 392 pp.

[8] Eisenberg M. A., Malvern L. E., “On finite element integration in natural co-ordinates”, Int. J. Numer. Meth. Eng., 7:4 (1973), 574–575 | DOI | MR | Zbl

[9] Hestenes M. R., Stiefel E., “Methods of Conjugate Gradients for Solving Linear Systems”, J. Res. Nat. Bur. Stand., 49:6 (1952), 409–436 | DOI | MR | Zbl