Comparative analysis of methods for solving an optimal control problem
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 4, pp. 49-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Approximation of a state-constrained optimal control problem with the right-hand side of a linear elliptic equation by the finite difference method is considered. Iterative methods for solving grid problems are built. Their convergent conditions are given. According to numerical results, analysis of their efficiency is done.
Keywords: optimal control, saddle problem with constraints, iterative methods.
@article{UZKU_2011_153_4_a4,
     author = {M. G. Khasanov},
     title = {Comparative analysis of methods for solving an optimal control problem},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {49--58},
     year = {2011},
     volume = {153},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a4/}
}
TY  - JOUR
AU  - M. G. Khasanov
TI  - Comparative analysis of methods for solving an optimal control problem
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 49
EP  - 58
VL  - 153
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a4/
LA  - ru
ID  - UZKU_2011_153_4_a4
ER  - 
%0 Journal Article
%A M. G. Khasanov
%T Comparative analysis of methods for solving an optimal control problem
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 49-58
%V 153
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a4/
%G ru
%F UZKU_2011_153_4_a4
M. G. Khasanov. Comparative analysis of methods for solving an optimal control problem. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 4, pp. 49-58. http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a4/

[1] Lapin A. V., Iteratsionnye metody resheniya setochnykh varaitsionnykh neravenstv, Izd-vo Kazan. un-ta, Kazan, 2008, 132 pp.

[2] Bergouniuox M., Ito K., Kunisch K., “Primal-dual strategy for constrained optimal control problems”, SIAM J. Contr. Optim., 37:4 (1999), 1176–1194 | DOI | MR

[3] Lapin A. V., Khasanov M. G., “Reshenie zadachi optimalnogo upravleniya pravoi chastyu ellipticheskogo uravneniya pri nalichii ogranichenii na sostoyanie”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 152, no. 4, 2010, 56–67 | Zbl

[4] Bergouniuox M., Kunisch K., “Augmented lagrangian techniques for elliptic state constrained optimal control problems”, SIAM J. Contr. Optim., 35:5 (1997), 1524–1543 | DOI | MR

[5] Gracer C., Kornhuber R., “Nonsmooth Newton methods for set-valued saddle point problems”, SIAM J. Numer. Anal., 47:2 (2009), 1251–1273 | DOI | MR