Relative $N$-radius of a bounded subset of a metric space
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 4, pp. 28-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper, we study properties of the best radius of approximation of a bounded subset of a metric space by $N$-nets from another set. We obtain an upper bound of the difference of such radii using the Hausdorff distances between the sets under consideration. In the case of bounded metric spaces, the Gromov–Hausdorff distances and a more simple (in terms of amount of calculations) distance between these spaces are used for estimation.
Keywords: metric space, relative $N$-radius, Hausdorff pseudometric, Gromov–Hausdorff distance.
@article{UZKU_2011_153_4_a2,
     author = {E. N. Sosov},
     title = {Relative $N$-radius of a~bounded subset of a~metric space},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {28--36},
     year = {2011},
     volume = {153},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a2/}
}
TY  - JOUR
AU  - E. N. Sosov
TI  - Relative $N$-radius of a bounded subset of a metric space
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 28
EP  - 36
VL  - 153
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a2/
LA  - ru
ID  - UZKU_2011_153_4_a2
ER  - 
%0 Journal Article
%A E. N. Sosov
%T Relative $N$-radius of a bounded subset of a metric space
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 28-36
%V 153
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a2/
%G ru
%F UZKU_2011_153_4_a2
E. N. Sosov. Relative $N$-radius of a bounded subset of a metric space. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 4, pp. 28-36. http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a2/

[1] Kuratovskii K., Topologiya, v. 1, Mir, M., 1966, 594 pp. | MR

[2] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, In-t komp. issled., M.–Izhevsk, 2004, 496 pp.

[3] Garkavi A. L., “O nailuchshei seti i nailuchshem sechenii mnozhestv v normirovannom prostranstve”, Izv. AN SSSR. Ser. matem., 26:1 (1962), 87–106 | MR | Zbl

[4] Wisnicki A., Wosko J., “On relative Hausdorff measures of noncompactness and relative Chebyshev radii in Banach spaces”, Proc. Amer. Math. Soc., 124:8 (1996), 2465–2474 | DOI | MR | Zbl

[5] Sosov E. N., “Otnositelnyi chebyshevskii tsentr konechnogo mnozhestva geodezicheskogo prostranstva”, Izv. vuzov. Matem., 2008, no. 4, 66–72 | MR | Zbl

[6] van Dulst D., Sims B., “Fixed points of nonexpansive mappings and Chebyshev centers in Banach spaces with norms of type (KK)”, Banach space theory and its applications, Lecture Notes in Math., 991, Springer-Verlag, 1983, 35–43 | DOI | MR

[7] Rao T. S. S. R. K., “Chebyshev centres and centrable sets”, Proc. Amer. Math. Soc., 130:9 (2002), 2593–2598 | DOI | MR | Zbl

[8] Bandyopadhyay P., Dutta S., “Weighted Chebyshev Centres and Intersection Properties of Balls in Banach Spaces”, Contemp. Math., 328 (2003), 43–58 | DOI | MR | Zbl