Simple algorithms for calculation of the classical a posteriori error estimates of numerical solutions of elliptic equations
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 4, pp. 11-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

As is well-known, for the problems in solid mechanics, “classical” approach to a posteriori error estimation stems from the Lagrange and Castigliano variational principles. If the problem is linear and an approximate solution satisfies geometrical restrictions, then potential energy of the error is estimated by the potential energy of the difference of the stress tensor corresponding to the approximate solution and any stress tensor satisfying the equations of equilibrium. We show that in many cases, construction of equilibrated stress fields can be done for a number of arithmetic operations, which is asymptotically optimal. This approach allows us also to improve known a posteriori estimates by means of arbitrary nonequilibrated tensors. Numerical experiments show that our a posteriori error estimators provide rather good efficiency indices, which often converge to unity, have linear complexity, and are robust.
Keywords: a posteriori estimates, error in approximate solutions, finite element method.
@article{UZKU_2011_153_4_a1,
     author = {V. G. Korneev},
     title = {Simple algorithms for calculation of the classical a~posteriori error estimates of numerical solutions of elliptic equations},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {11--27},
     year = {2011},
     volume = {153},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a1/}
}
TY  - JOUR
AU  - V. G. Korneev
TI  - Simple algorithms for calculation of the classical a posteriori error estimates of numerical solutions of elliptic equations
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 11
EP  - 27
VL  - 153
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a1/
LA  - ru
ID  - UZKU_2011_153_4_a1
ER  - 
%0 Journal Article
%A V. G. Korneev
%T Simple algorithms for calculation of the classical a posteriori error estimates of numerical solutions of elliptic equations
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 11-27
%V 153
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a1/
%G ru
%F UZKU_2011_153_4_a1
V. G. Korneev. Simple algorithms for calculation of the classical a posteriori error estimates of numerical solutions of elliptic equations. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 4, pp. 11-27. http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a1/

[1] Ainsworth M., Demkowicz L., Kim C.-W., “Analysis of the equilibrated residual method for a posteriori estimation on meshes with hanging nodes”, Comp. Meth. Appl. Math. Engrg., 196:37–40 (2007), 3493–3507 | DOI | MR | Zbl

[2] Luce R., Wohlmuth B., “A local a posteriori error estimator based on equilibrated fluxes”, SIAM J. Num. Anal., 42:4 (2004), 1394–1414 | DOI | MR | Zbl

[3] Vejchodsky T., “Local a posteriori error estimator based on the hypercircle method”, European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004, eds. Neittaanmaki P., Rossi T., Korotov S., Onate E., Periaux J., Knorzer D., Yavaskyla, Finland, 2004, 16 pp. http://www.imamod.ru/~serge/arc/conf/ECCOMAS_2004/ECCOMAS_V2/proceedings/pdf/769.pdf

[4] Braess D., Schoberl J., “Equilibrated residual error estimator for Maxswell's equations”, Math. Comp., 77 (2008), 651–672 | DOI | MR | Zbl

[5] Gockenbach M. J., Understanding and implementing the finite element method, SIAM, 2006, 363 pp. | MR | Zbl

[6] Anufriev I. E., Korneev V. G., Kostylev V. S., “Exactly equilibrated fields, can they be efficiently used for a posteriori error estimation?”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 148, no. 4, 2006, 94–143 | Zbl

[7] Anufriev I., Korneev V., Kostylev V., A posteriori error estimation by means of the exactly equilibrated fields, Ricam Report No 2007-07, Johann Radon Institute for Computational and Applied Mathematics, Linz, Austria, 2007, 54 pp.

[8] Tomar S. K., Repin S. I., Efficient computable error bounds for discontinuous Galerkin approximations of elliptic problems, RICAM-report No 2007-39, Johann Radon Institute for Computational and Applied Mathematics, Linz, Austria, 2007, 20 pp.

[9] Repin S. I., Tomar S., A posteriori error estimates for nonconforming approximation of elliptic problems based on Helmholtz type decomposition of the error, RICAM-report No 2007-41, Johann Radon Institute for Computational and Applied Mathematics, Linz, Austria, 2007, 16 pp.

[10] Korneev V. G., “V razvitie klassicheskogo podkhoda k aposteriornym otsenkam pogreshnosti priblizhennykh reshenii kraevykh zadach”, Setochnye metody dlya kraevykh zadach i prilozheniya, Tr. 6-go Vseros. seminara, Izd-vo Kazan. un-ta, Kazan, 2007, 162–167

[11] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1964, 512 pp. | MR

[12] Ainsworth M., Oden J. T., A posteriori estimation in finite element analysis, John Wiley Sons, Inc., N.Y., 2000, 240 pp. | MR

[13] Babuska I., Strouboulis T., Finite element method and its reliability, Oxford Univ. Press, N.Y., 2001, 802 pp. | MR | Zbl

[14] Neittaanmaki P., Repin S. I., Reliable methods for computer simulation: Error control and a posteriori estimates, Elsevier, N.Y., 2004, 305 pp. | MR | Zbl

[15] Repin S. I., Frolov M., “Ob aposteriornykh otsenkakh tochnosti priblizhennykh reshenii kraevykh zadach dlya ellipticheskikh uravnenii”, Zhurn. vychisl. matem. i matem. fiz., 42:12 (2002), 1774–1787 | MR | Zbl

[16] Korneev V. G., “O postroenii variatsionno-raznostnykh skhem vysokogo poryadka tochnosti”, Vestn. Leningr. un-ta, 25:19 (1970), 28–40 | MR | Zbl

[17] Korneev V. G., Skhemy metoda konechnykh elementov vysokikh poryadkov tochnosti, Izd-vo Leningr. un-ta, L., 1977, 255 pp. | MR

[18] de Vebeke F., “Displacement and equilibrium models in the finite element method”, Stress Analysis, eds. O. C. Zienkiewicz, G. S. Holister, Wiley, London–N.Y., 1965, 145–197

[19] Arthurs A. M., Complementary variational principles, Clarendon Press, Oxford, 1980, 154 pp. | MR | Zbl

[20] Mosolov P. P., Myasnikov B. P., Mekhanika zhestkoplasticheskikh sred, Nauka, M., 1981, 207 pp. | MR | Zbl

[21] Washizu K., Variational methods in elasticity and plasticity, Pergamon Press, N.Y., 1982, 630 pp. | MR | Zbl

[22] Berdichevskii V. L., Variatsionnye printsipy mekhaniki sploshnoi sredy, Nauka, M., 1983, 448 pp. | MR

[23] Glowinski R., Numerical methods for nonlinear variational problems, Springer-Verlag, N.Y.–Berlin–Heidelberg–Tokio, 1984, 493 pp. | MR | Zbl

[24] Duvaut G., Lions J.-L., Inequalities in mechanics and physics, Springer-Verlag, Berlin–Hedelberg–N.Y., 1976, 397 pp. | MR | Zbl

[25] Ekeland I., Temam R., Convex analysis and variational problems, North-Holland Pub. Co., Amsterdam–N.Y., 1976, 402 pp. | MR | Zbl