@article{UZKU_2011_153_4_a0,
author = {A. P. Gogin and M. M. Karchevsky},
title = {An iterative method for mixed finite element schemes},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {5--10},
year = {2011},
volume = {153},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a0/}
}
TY - JOUR AU - A. P. Gogin AU - M. M. Karchevsky TI - An iterative method for mixed finite element schemes JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2011 SP - 5 EP - 10 VL - 153 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a0/ LA - ru ID - UZKU_2011_153_4_a0 ER -
A. P. Gogin; M. M. Karchevsky. An iterative method for mixed finite element schemes. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 4, pp. 5-10. http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a0/
[1] Karchevsky M. M., Fedotov A. E., “Error estimates and iterative procedure for mixed finite element solution of second-order quasi-linear elliptic problems”, Comput. Meth. Appl. Math., 4:4 (2004), 445–463 | DOI | MR | Zbl
[2] Karchevskii M. M., Fedotov A. E., “Ob odnom variante smeshannogo metoda konechnykh elementov dlya kvazilineinykh ellipticheskikh uravnenii”, Issled. po prikl. matem. i informatike, 24, Kazan. gos. un-t, Kazan, 2003, 74–80
[3] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp. | MR
[4] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, N.Y., 1991, 362 pp. | MR | Zbl
[5] Temam R., Navier–Stokes Equation. Theory and Numerical Analysis, North-Holland Publ. Comp., Amsterdam–N.Y.–Oxford, 1979, 504 pp. | MR | Zbl
[6] Farhloul M., “A mixed finite element method for a nonlinear Dirichlet problem”, IMA. J. Num. Anal., 18:1 (1998), 121–132 | DOI | MR | Zbl
[7] Farhloul M., Manouzi H., “On a mixed finite element method for the $p$-Laplacian”, Can. Appl. Math. Quart., 8:1 (2000), 67–78 | DOI | MR | Zbl
[8] Maslovskaya L. V., “Obobschennyi algoritm Kholesskogo dlya smeshannykh diskretnykh analogov ellipticheskikh kraevykh zadach”, Zhurn. vychisl. matem. i matem. fiz., 29:1 (1989), 67–74 | MR | Zbl
[9] Maslovskaya L. V., “Ob usloviyakh primenimosti obobschennogo algoritma Kholesskogo”, Zhurn. vychisl. matem. i matem. fiz., 32:3 (1992), 339–347 | MR | Zbl
[10] Ikramov Kh. D., “Neskolko zamechanii po povodu obobschennogo algoritma Kholesskogo”, Zhurn. vychisl. matem. i matem. fiz., 32:7 (1992), 1126–1130 | MR | Zbl
[11] Dyakonov E. G., Minimizatsiya vychislitelnoi raboty. Asimptoticheski optimalnye algoritmy dlya ellipticheskikh zadach, Nauka, M., 1989, 272 pp. | MR | Zbl
[12] Bychenkov Yu. V., Chizhonkov E. V., Iteratsionnye metody resheniya sedlovykh zadach, Binom. Laboratoriya znanii, M., 2010, 349 pp.
[13] Karchevskii M. M., Lyashko A. D., Raznostnye skhemy dlya nelineinykh uravnenii matematicheskoi fiziki, Izd-vo Kazan. un-ta, Kazan, 1976, 156 pp.
[14] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 591 pp. | MR