An iterative method for mixed finite element schemes
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 4, pp. 5-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article proposes and investigates an iterative method with a saddle preconditioner for solving a system of nonlinear equations that arises in the approximation of a quasilinear second-order elliptic equation with a mixed scheme of finite elements of Raviart–Thomas type. The ways of choosing iteration parameters to ensure convergence of the method are indicated. The results of numerical experiments are presented.
Keywords: second-order quasilinear elliptic equation, mixed finite element method, iterative method, saddle matrix, convergence investigation.
@article{UZKU_2011_153_4_a0,
     author = {A. P. Gogin and M. M. Karchevsky},
     title = {An iterative method for mixed finite element schemes},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {5--10},
     year = {2011},
     volume = {153},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a0/}
}
TY  - JOUR
AU  - A. P. Gogin
AU  - M. M. Karchevsky
TI  - An iterative method for mixed finite element schemes
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 5
EP  - 10
VL  - 153
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a0/
LA  - ru
ID  - UZKU_2011_153_4_a0
ER  - 
%0 Journal Article
%A A. P. Gogin
%A M. M. Karchevsky
%T An iterative method for mixed finite element schemes
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 5-10
%V 153
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a0/
%G ru
%F UZKU_2011_153_4_a0
A. P. Gogin; M. M. Karchevsky. An iterative method for mixed finite element schemes. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 4, pp. 5-10. http://geodesic.mathdoc.fr/item/UZKU_2011_153_4_a0/

[1] Karchevsky M. M., Fedotov A. E., “Error estimates and iterative procedure for mixed finite element solution of second-order quasi-linear elliptic problems”, Comput. Meth. Appl. Math., 4:4 (2004), 445–463 | DOI | MR | Zbl

[2] Karchevskii M. M., Fedotov A. E., “Ob odnom variante smeshannogo metoda konechnykh elementov dlya kvazilineinykh ellipticheskikh uravnenii”, Issled. po prikl. matem. i informatike, 24, Kazan. gos. un-t, Kazan, 2003, 74–80

[3] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp. | MR

[4] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, N.Y., 1991, 362 pp. | MR | Zbl

[5] Temam R., Navier–Stokes Equation. Theory and Numerical Analysis, North-Holland Publ. Comp., Amsterdam–N.Y.–Oxford, 1979, 504 pp. | MR | Zbl

[6] Farhloul M., “A mixed finite element method for a nonlinear Dirichlet problem”, IMA. J. Num. Anal., 18:1 (1998), 121–132 | DOI | MR | Zbl

[7] Farhloul M., Manouzi H., “On a mixed finite element method for the $p$-Laplacian”, Can. Appl. Math. Quart., 8:1 (2000), 67–78 | DOI | MR | Zbl

[8] Maslovskaya L. V., “Obobschennyi algoritm Kholesskogo dlya smeshannykh diskretnykh analogov ellipticheskikh kraevykh zadach”, Zhurn. vychisl. matem. i matem. fiz., 29:1 (1989), 67–74 | MR | Zbl

[9] Maslovskaya L. V., “Ob usloviyakh primenimosti obobschennogo algoritma Kholesskogo”, Zhurn. vychisl. matem. i matem. fiz., 32:3 (1992), 339–347 | MR | Zbl

[10] Ikramov Kh. D., “Neskolko zamechanii po povodu obobschennogo algoritma Kholesskogo”, Zhurn. vychisl. matem. i matem. fiz., 32:7 (1992), 1126–1130 | MR | Zbl

[11] Dyakonov E. G., Minimizatsiya vychislitelnoi raboty. Asimptoticheski optimalnye algoritmy dlya ellipticheskikh zadach, Nauka, M., 1989, 272 pp. | MR | Zbl

[12] Bychenkov Yu. V., Chizhonkov E. V., Iteratsionnye metody resheniya sedlovykh zadach, Binom. Laboratoriya znanii, M., 2010, 349 pp.

[13] Karchevskii M. M., Lyashko A. D., Raznostnye skhemy dlya nelineinykh uravnenii matematicheskoi fiziki, Izd-vo Kazan. un-ta, Kazan, 1976, 156 pp.

[14] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 591 pp. | MR