Notes on classical analogs of quantum black holes
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 94-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The model is built in which the main global properties of classical and quasi-classical black holes become local (the event horizon, “no-hair,” temperature and entropy). Our construction is based on the features of a quantum collapse, discovered when studying some quantum black hole models. But our model is purely classical, and this allows to use self-consistently the Einstein equations and classical (local) thermodynamics and explain in this way the "$\log3$"-puzzle.
Keywords: classical and quasi-classical black holes.
@article{UZKU_2011_153_3_a9,
     author = {V. Berezin},
     title = {Notes on classical analogs of quantum black holes},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {94--106},
     year = {2011},
     volume = {153},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a9/}
}
TY  - JOUR
AU  - V. Berezin
TI  - Notes on classical analogs of quantum black holes
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 94
EP  - 106
VL  - 153
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a9/
LA  - en
ID  - UZKU_2011_153_3_a9
ER  - 
%0 Journal Article
%A V. Berezin
%T Notes on classical analogs of quantum black holes
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 94-106
%V 153
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a9/
%G en
%F UZKU_2011_153_3_a9
V. Berezin. Notes on classical analogs of quantum black holes. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 94-106. http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a9/

[1] Hawking S. W., Ellis G. F. R., Large Scale Structure of Space-Time, Cambridge Univ. Press, Cambridge, 1975, 400 pp. | MR

[2] Ruffini R., Wheeler J. A., “Introducing the black hole”, Physics Today, 24 (1971), 30–41 | DOI

[3] Regge R., Wheeler J. A., “Stability of a Schwarzschild Singularity”, Phys. Rev., 108 (1957), 1036–1039 | DOI | MR

[4] Chandrasekhar S., The Mathematical Theory of Black Holes, Oxford Univ. Press, N.Y., 1983, 667 pp. | MR | Zbl

[5] Cristodoulou D., “Reversible and Irreversible Transformations in Black-Hole Physics”, Phys. Rev. Lett., 25 (1970), 1596–1597 | DOI

[6] Cristodoulou D., Ruffini R., “Reversible Transformations of a Charged Black Hole”, Phys. Rev. D, 4 (1971), 3552–3555 | DOI

[7] Bekenstein J. D., “Black Holes And The Second Law of Thermodynamics”, Lett. Nuovo Cim., 4 (1972), 737–740 | DOI

[8] Bekenstein J. D., “Black Holes and Entropy”, Phys. Rev. D, 7 (1973), 2333–2346 | DOI | MR

[9] Bekenstein J. D., “Generalized second law of thermodynamics in black-hole physics”, Phys. Rev. D, 9 (1974), 3292–3300 | DOI

[10] Bardeen J. M., Carter B., Hawking S. W., “The four laws of black hole mechanics”, Commun. Math. Phys., 31 (1973), 161–170 | DOI | MR | Zbl

[11] Hawking S. W., “Black hole explosions?”, Nature, 248 (1974), 30–31 | DOI

[12] Hawking S. W., “Particle Creation by Black Holes”, Commun. Math. Phys., 43 (1975), 199–220 | DOI | MR

[13] Unruh W. G., “Notes on black-hole evaporation”, Phys. Rev. D, 14 (1976), 870–892 | DOI

[14] Bekenstein J. D., “The quantum mass spectrum of the Kerr black hole”, Lett. Nuovo Cim., 11 (1974), 467–477 | DOI

[15] Bekenstein J. D., Mukhanov V. F., “Spectroscopy of the quantum black hole”, Phys. Lett. B, 360:1–2 (1995), 7–12 | DOI | MR

[16] Ashtekar A., Baez J., Corichi A., Krasnov K., “Quantum Geometry and Black Hole Entropy”, Phys. Rev. Lett., 80 (1998), 904–907 | DOI | MR | Zbl

[17] Ashtekar A., Baez J., Krasnov K., “Quantum Geometry of Isolated Horizons and Black Hole Entropy”, Adv. Theor. Math. Phys., 4 (2000), 1–94 | MR | Zbl

[18] Hod S., “Bohr's Correspondence Principle and the Area Spectrum of Quantum Black Holes”, Phys. Rev. Lett, 81 (1998), 4293–4296 | DOI | MR | Zbl

[19] Motl L., An analytical computation of asymptotic Schwarzschild quasinormal frequencies, 2003, 28 pp., arXiv: gr-qc/0212096v3 | MR

[20] Motl L., Neitzke A., “Asymptotic black hole quasinormal frequencies”, Adv. Theor. Math. Phys., 7 (2003), 307–330 | DOI | MR

[21] Natario J., Schiappa R., On the Classification of Asymptotic Quasinormal Frequencies for $d$-Dimensional Black Holes and Quantum Gravity, 2005, 100 pp., arXiv: hep-th/0411267v3 | MR

[22] Berezin V. A., “On a quantum mechanical model of a black hole”, Phys. Lett. B, 241 (1990), 194–220 | DOI | MR

[23] Berezin V. A., Boyarsky A. M., Neronov A. Yu., “Quantum geometrodynamics for black holes and wormholes”, Phys. Rev. D, 57 (1998), 1118–1128 | DOI | MR

[24] 't Hooft G., “On the quantum structure of a black hole”, Nucl. Phys. B, 256 (1985), 727–745 | DOI | MR

[25] Berezin V. A., Okhrimenko M. Yu., “A theory of thin shells with orbiting constituents”, Class. Quant. Gravity, 18 (2001), 2195–2215 | DOI | MR | Zbl