Bol transformation quasigroups and three-webs defined by them
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 81-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The notions of a local smooth quasigroup and a quasigroup of transformations are natural generalizations of the notions of the Lie group and the Lie transformation group. We define the quasigroup of transformations as an action $f$ of the local smooth $q$-dimensional quasigroup $Q(*)$ on the smooth $p$-dimensional manifold $Y$ $(1\leq p\leq q)$ given by a smooth function $$ f\colon Q\times Y\to Y,\quad z=f(a,y),\quad a\in Q,\quad y,z\in Y. $$ On the other hand, the equation $z=f(a,y)$ defines the three-web $QW(p,q,q)$ formed by a foliation of $p$-dimensional leaves $a=\mathrm{const}$ and two foliations of $q$-dimensional leaves $y=\mathrm{const}$ and $z=f(a,y)=\mathrm{const}$ on the manifold $Q\times Y$. Thus, we can use the three-web theory methods to study different classes of smooth local quasigroups of transformations. In the present paper, we investigate Bol quasigroups of transformations characterized by some condition on the function $f$.
Mots-clés : quasigroup, quasigroup of transformations, Bol quasigroup
Keywords: three-web, Bol three-web, three-web configuration, core of Bol three-web, locally symmetric space structure.
@article{UZKU_2011_153_3_a7,
     author = {G. A. Tolstikhina},
     title = {Bol transformation quasigroups and three-webs defined by them},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {81--86},
     year = {2011},
     volume = {153},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a7/}
}
TY  - JOUR
AU  - G. A. Tolstikhina
TI  - Bol transformation quasigroups and three-webs defined by them
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 81
EP  - 86
VL  - 153
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a7/
LA  - ru
ID  - UZKU_2011_153_3_a7
ER  - 
%0 Journal Article
%A G. A. Tolstikhina
%T Bol transformation quasigroups and three-webs defined by them
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 81-86
%V 153
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a7/
%G ru
%F UZKU_2011_153_3_a7
G. A. Tolstikhina. Bol transformation quasigroups and three-webs defined by them. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 81-86. http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a7/

[1] Tolstikhina G. A., “Algebra i geometriya tri-tkanei, obrazovannykh sloeniyami raznykh razmernostei”, Sovrem. matem. i ee prilozheniya, 32, 2005, 29–116

[2] Akivis M. A., Shelekhov A. M., Mnogomernye tri-tkani i ikh prilozheniya, TvGU, Tver, 2010, 308 pp.

[3] Akivis M. A., Goldberg V. V., “O mnogomernykh tri-tkanyakh, obrazovannykh poverkhnostyami raznykh razmernostei”, Dokl. AN SSSR, 203:2 (1972), 263–266 | MR | Zbl

[4] Tolstikhina G. A., Shelekhov A. M., “O kvazigruppakh Bola preobrazovanii”, Dokl. RAN, 401:2 (2005), 166–168 | MR | Zbl

[5] Akivis M. A., “O tri-tkanyakh mnogomernykh poverkhnostei”, Itogi nauki i tekhn. Trudy geom. sem., 2, VINITI AN SSSR, 1969, 7–31 | MR | Zbl

[6] Akivis M. A., Gerasimenko S. A., “O nekotorykh figurakh zamykaniya na mnogoobraziyakh s simmetriei”, Tkani i kvazigruppy, Kalinin, 1982, 7–11 | MR | Zbl

[7] Sabinin L. V., Mikheev P. O., Teoriya gladkikh lup Bola, Un-t druzhby narodov, M., 1985, 80 pp. | MR | Zbl

[8] Tolstikhina G. A., Shelekhov A. M., “O tri-tkani Bola, obrazovannoi sloeniyami raznykh razmernostei”, Izv. vuzov. Matem., 2005, no. 5, 56–62 | MR | Zbl

[9] Belousov V. D., “Serdtsevina lupy Bola”, Issledovaniya po obschei algebre, Kishinev, 1965, 53–65 | MR

[10] Tolstikhina G. A., “Differentsialno-geometricheskie struktury na tri-tkanyakh, obrazovannykh sloeniyami raznykh razmernostei”, Itogi nauki i tekhn. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 124, VINITI, M., 2010, 287–327 | MR

[11] Tolstikhina G. A., “O lokalno simmetricheskoi strukture, svyazannoi s obobschennoi levoi tri-tkanyu Bola $B_l(p,q,q)$”, Geometriya, topologiya ta ikh zastosuvannya, Zb. prats In-tu matematiki NAN Ukraini, 6, no. 2, 2009, 247–255 | Zbl

[12] Batalin I. A., “Quasigroup construction and first class constraints”, J. Math. Phys., 22:9 (1981), 1837–1849 | DOI | MR

[13] Nesterov A. I., “Kvazigruppovye idei v fizike”, Kvazigruppy i neassotsiativnye algebry v fizike, Tr. In-ta fiziki, 66, Tartu, 1990, 107–120 | MR | Zbl

[14] Lykhmus Ya., Paal E., Sorgsepp L., “Neassotsiativnost v matematike i fizike”, Kvazigruppy i neassotsiativnye algebry v fizike, Tr. In-ta fiziki, 66, Tartu, 1990, 8–22 | MR

[15] Mikheev P. O., O lupakh preobrazovanii, Dep. v VINITI No 4531-85, 1985

[16] Miheev P. O., “Quasigroups of transformations”, Kvazigruppy i neassotsiativnye algebry v fizike, Tr. In-ta fiziki, 66, Tartu, 1990, 54–66 | MR | Zbl