Bol transformation quasigroups and three-webs defined by them
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 81-86
Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
The notions of a local smooth quasigroup and a quasigroup of transformations are natural generalizations of the notions of the Lie group and the Lie transformation group. We define the quasigroup of transformations as an action $f$ of the local smooth $q$-dimensional quasigroup $Q(*)$ on the smooth $p$-dimensional manifold $Y$ $(1\leq p\leq q)$ given by a smooth function $$ f\colon Q\times Y\to Y,\quad z=f(a,y),\quad a\in Q,\quad y,z\in Y. $$ On the other hand, the equation $z=f(a,y)$ defines the three-web $QW(p,q,q)$ formed by a foliation of $p$-dimensional leaves $a=\mathrm{const}$ and two foliations of $q$-dimensional leaves $y=\mathrm{const}$ and $z=f(a,y)=\mathrm{const}$ on the manifold $Q\times Y$. Thus, we can use the three-web theory methods to study different classes of smooth local quasigroups of transformations. In the present paper, we investigate Bol quasigroups of transformations characterized by some condition on the function $f$.
Mots-clés :
quasigroup, quasigroup of transformations, Bol quasigroup
Keywords: three-web, Bol three-web, three-web configuration, core of Bol three-web, locally symmetric space structure.
Keywords: three-web, Bol three-web, three-web configuration, core of Bol three-web, locally symmetric space structure.
@article{UZKU_2011_153_3_a7,
author = {G. A. Tolstikhina},
title = {Bol transformation quasigroups and three-webs defined by them},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {81--86},
publisher = {mathdoc},
volume = {153},
number = {3},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a7/}
}
TY - JOUR AU - G. A. Tolstikhina TI - Bol transformation quasigroups and three-webs defined by them JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2011 SP - 81 EP - 86 VL - 153 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a7/ LA - ru ID - UZKU_2011_153_3_a7 ER -
%0 Journal Article %A G. A. Tolstikhina %T Bol transformation quasigroups and three-webs defined by them %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2011 %P 81-86 %V 153 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a7/ %G ru %F UZKU_2011_153_3_a7
G. A. Tolstikhina. Bol transformation quasigroups and three-webs defined by them. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 81-86. http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a7/