Creation of solitons for sine-Gordon and Korteweg–de Vries equations by means of connections defining the representations of zero curvature
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 72-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is possible to create traveling wave type solutions (and in particular soliton solutions) of partial differential equations by means of connections defining the representations of zero curvature. In this paper we create the solitons of the sine-Gordon equation and the Korteweg–de Vries equation. In the final section we compare the proposed method for soliton creation with the inverse scattering method. We systematically use the Cartan–Laptev invariant analytic method in the work.
Keywords: connection in principal bundle, connection in associated bundle, connection defining the representation of zero curvature, differential equation, Bäcklund maps.
Mots-clés : solitons
@article{UZKU_2011_153_3_a6,
     author = {A. K. Rybnikov},
     title = {Creation of solitons for {sine-Gordon} and {Korteweg{\textendash}de~Vries} equations by means of connections defining the representations of zero curvature},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {72--80},
     year = {2011},
     volume = {153},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a6/}
}
TY  - JOUR
AU  - A. K. Rybnikov
TI  - Creation of solitons for sine-Gordon and Korteweg–de Vries equations by means of connections defining the representations of zero curvature
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 72
EP  - 80
VL  - 153
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a6/
LA  - ru
ID  - UZKU_2011_153_3_a6
ER  - 
%0 Journal Article
%A A. K. Rybnikov
%T Creation of solitons for sine-Gordon and Korteweg–de Vries equations by means of connections defining the representations of zero curvature
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 72-80
%V 153
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a6/
%G ru
%F UZKU_2011_153_3_a6
A. K. Rybnikov. Creation of solitons for sine-Gordon and Korteweg–de Vries equations by means of connections defining the representations of zero curvature. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 72-80. http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a6/

[1] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Itogi nauki i tekhniki. Problemy geometrii, 9, VINITI AN SSSR, M., 1972, 5–246 | MR | Zbl

[2] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii”, Trudy Mosk. matem. o-va, 2, 1953, 275–382 | MR | Zbl

[3] Laptev G. F., “Teoretiko-gruppovoi metod differentsialno-geometricheskikh issledovanii”, Trudy 3-go Vsesoyuz. matem. s'ezda (M., 1956 g.), v. 3, Izd-vo AN SSSR, M., 1958, 409–418

[4] Laptev G. F., “Osnovnye infinitezimalnye struktury vysshikh poryadkov na gladkom mnogoobrazii”, Itogi nauki i tekhniki. Trudy geom. seminara, 1, VINITI, M., 1966, 139–189 | MR | Zbl

[5] Laptev G. F., “Strukturnye uravneniya glavnogo rassloennogo mnogoobraziya”, Itogi nauki i tekhniki. Trudy geom. seminara, 2, VINITI, M., 1969, 161–178 | MR | Zbl

[6] Vasilev A. M., Teoriya differentsialno-geometricheskikh struktur, Izd-vo Mosk. un-ta, M., 1987, 190 pp. | MR | Zbl

[7] Rybnikov A. K., “O spetsialnykh svyaznostyakh, opredelyayuschikh predstavlenie nulevoi krivizny dlya evolyutsionnykh uravnenii vtorogo poryadka”, Izv. vuzov. Matem., 1999, no. 9, 32–41 | MR | Zbl

[8] Rybnikov A. K., “Otobrazheniya Beklunda s tochki zreniya teorii svyaznostei”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 151, no. 4, 2009, 93–115 | Zbl

[9] Ablovits M., Sigur Kh., Solitony i metod obratnoi zadachi, Mir, M., 1987, 479 pp. | MR

[10] Novokshenov V. Yu., Vvedenie v teoriyu solitonov, In-t kompyut. issled., Izhevsk, 2002, 96 pp. | Zbl