Gauge fields and gravity
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 42-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In connection with the energy problem in the elementary particle theory, astrophysics and cosmology, the local symmetry conception in theoretical physics and its influence on the structure of the gauge field theory are under discussion here. Einsteinian General Relativity is considered as a special case of the gauge theory, when the gauge field is given by the symmetric tensor of rank two. It is shown that the symmetry group localization leads to modification of the conservation law form. In particular, in consequence of the translation group localization the energy-momentum conservation law written in usual form becomes covariant one. Within the Lagrangian formalism for infinite Lie groups (which we worked out in 1967), this conservation law is Noether's identities corresponding to her second theorem. In the case of GR, Noether identities are generated by generally covariant transformations of the space-time coordinates considered as the local translations. In the gauge field theory the problem of the gravity energy-momentum pseudotensor does not exist. Appearance of the pseudotensor-type structures points to localization of the symmetry group of the present theory. This phenomenon characterizes modifications of all conservation law forms. A new form of the conservation laws (covariant conservation laws) is given by the identities of Noether's second theorem for each particular local symmetry. These very identities make it possible to treat geometrically the interactions of elementary particles and show in which way it must be done. The dynamical constants are obtained by integration of the corresponding differential covariant conservation laws. In this process, Petrov's classification of Riemannian spaces ought to be used.
Keywords: geometry, global and local symmetries, gravity, gauge field theory, energy problem.
@article{UZKU_2011_153_3_a3,
     author = {N. P. Konopleva},
     title = {Gauge fields and gravity},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {42--49},
     year = {2011},
     volume = {153},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a3/}
}
TY  - JOUR
AU  - N. P. Konopleva
TI  - Gauge fields and gravity
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 42
EP  - 49
VL  - 153
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a3/
LA  - ru
ID  - UZKU_2011_153_3_a3
ER  - 
%0 Journal Article
%A N. P. Konopleva
%T Gauge fields and gravity
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 42-49
%V 153
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a3/
%G ru
%F UZKU_2011_153_3_a3
N. P. Konopleva. Gauge fields and gravity. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 42-49. http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a3/

[1] Einshtein A., Sobranie nauchnykh trudov, v 4 t., v. 2, Nauka, M., 1966, 878 pp.

[2] Landau L. D., Livshits E. M., Teoriya polya, Fizmatgiz, M., 1960, 400 pp. | MR | Zbl

[3] Meller K., Teoriya otnositelnosti, Atomizdat, M., 1975, 400 pp.

[4] Petrov A. Z., Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966, 496 pp. | MR

[5] D. D. Ivanenko (red.), Elementarnye chastitsy i kompensiruyuschie polya, Mir, M., 1964, 300 pp.

[6] Konopleva N. P., Geometricheskoe opisanie vzaimodeistvii, Dis. $\dots$ kand. fiz.-matem. nauk, FIAN, M., 1969, 145 pp.

[7] Konopleva N. P., “Geometricheskoe opisanie kalibrovochnykh polei”, Tr. Mezhdunar. seminara “Vektornye mezony i elektromagnitnye vzaimodeistviya”, ed. A. M. Baldin, OIYaI, Dubna, 1969, 55–84

[8] Konopleva N. P., Popov V. N., Kalibrovochnye polya, Atomizdat, M., 1972, 240 pp. | MR

[9] Sing Dzh. L., Obschaya teoriya otnositelnosti, Izd-vo inostr. lit., M., 1963, 432 pp.

[10] Konopleva N. P., “Ob integralnykh zakonakh sokhraneniya v obschei teorii otnositelnosti”, Dokl. AN SSSR, 190:6 (1970), 1070–1073 | MR

[11] Petrov A. Z., Prostranstva Einshteina, Fizmatlit, M., 1961, 243 pp. | MR | Zbl

[12] Konopleva N. P., “Variatsionnyi formalizm dlya beskonechnykh grupp i teoriya polya”, Gravitatsiya i teoriya otnositelnosti, 4–5, Kazan. gos. un-t, Kazan, 1968, 67–77 | MR

[13] Nöther E., “Invariante Variation probleme”, Nach. von der Kön. Ges. der Wissenschaften zu Göttingen Math.-Phys. Kl., 1918, no. 2, 235–258

[14] Veil G., Teoriya grupp i kvantovaya mekhanika, Nauka, M., 1986, 496 pp. | MR

[15] Dirak P. A. M., Printsipy kvantovoi mekhaniki, Fizmatgiz, M., 1960, 434 pp. | MR

[16] Vainberg C., Gravitatsiya i kosmologiya, Mir, M., 1975, 696 pp.

[17] Konopleva N. P., “Gravitatsionnye eksperimenty v kosmose”, Usp. fiz. nauk, 123:4 (1977), 537–563

[18] Utiyama R., K chemu prishla fizika, (Ot teorii otnositelnosti k teorii kalibrovochnykh polei), Znanie, M., 1986, 224 pp.

[19] Vainberg S., Pervye tri minuty, Energoizdat, M., 1981, 208 pp.

[20] Stanyukovich K. P., Gravitatsionnoe pole i elementarnye chastitsy, Nauka, M., 1965, 311 pp. | MR | Zbl

[21] Pol Dirak i fizika XX veka, Sb. nauch. tr., Nauka, M., 1990, 221 pp. | MR