Differential geometry of Walker manifolds
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 264-271

Voir la notice du chapitre de livre provenant de la source Math-Net.Ru

In the present paper, we focus our attention on the integrability and holomorphic conditions of a Norden–Walker structure $(M,g^{N+},\varphi)$. We also give a characterization of a Kähler–Norden–Walker metric $g^{N+}$.
Keywords: Norden–Walker structure, Walker manifolds, pure tensor field, Kähler–Norden–Walker metrics, holomorphic tensor field, twin metrics.
@article{UZKU_2011_153_3_a24,
     author = {A. A. Salimov and M. Iscan and S. Turanli},
     title = {Differential geometry of {Walker} manifolds},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {264--271},
     publisher = {mathdoc},
     volume = {153},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a24/}
}
TY  - JOUR
AU  - A. A. Salimov
AU  - M. Iscan
AU  - S. Turanli
TI  - Differential geometry of Walker manifolds
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 264
EP  - 271
VL  - 153
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a24/
LA  - en
ID  - UZKU_2011_153_3_a24
ER  - 
%0 Journal Article
%A A. A. Salimov
%A M. Iscan
%A S. Turanli
%T Differential geometry of Walker manifolds
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 264-271
%V 153
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a24/
%G en
%F UZKU_2011_153_3_a24
A. A. Salimov; M. Iscan; S. Turanli. Differential geometry of Walker manifolds. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 264-271. http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a24/