Differential geometry of Walker manifolds
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 264-271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper, we focus our attention on the integrability and holomorphic conditions of a Norden–Walker structure $(M,g^{N+},\varphi)$. We also give a characterization of a Kähler–Norden–Walker metric $g^{N+}$.
Keywords: Norden–Walker structure, Walker manifolds, pure tensor field, Kähler–Norden–Walker metrics, holomorphic tensor field, twin metrics.
@article{UZKU_2011_153_3_a24,
     author = {A. A. Salimov and M. Iscan and S. Turanli},
     title = {Differential geometry of {Walker} manifolds},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {264--271},
     year = {2011},
     volume = {153},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a24/}
}
TY  - JOUR
AU  - A. A. Salimov
AU  - M. Iscan
AU  - S. Turanli
TI  - Differential geometry of Walker manifolds
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 264
EP  - 271
VL  - 153
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a24/
LA  - en
ID  - UZKU_2011_153_3_a24
ER  - 
%0 Journal Article
%A A. A. Salimov
%A M. Iscan
%A S. Turanli
%T Differential geometry of Walker manifolds
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 264-271
%V 153
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a24/
%G en
%F UZKU_2011_153_3_a24
A. A. Salimov; M. Iscan; S. Turanli. Differential geometry of Walker manifolds. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 264-271. http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a24/

[1] Walker A. G., “Canonical form for a Rimannian space with a parallel field of null planes”, Quart. J. Math. Oxford, 1:2 (1950), 69–79 | DOI | MR | Zbl

[2] Matsushita Y., “Walker 4-manifolds with proper almost complex structure”, J. Geom. Phys., 55 (2005), 385–398 | DOI | MR | Zbl

[3] Bonome A., Castro R., Hervella L. M., Matsushita Y., “Construction of Norden structures on neutral 4-manifolds”, JP J. Geom. Topol., 5:2 (2005), 121–140 | MR | Zbl

[4] Salimov A. A., Iscan M., Akbulut K., “Some remarks concerning hyperholomorphic B-manifolds”, Chin. Ann. Math. Ser. B, 29:6 (2008), 631–640 | DOI | MR | Zbl

[5] Ganchev G. T., Borisov A. V., “Note on the almost complex manifolds with a Norden metric”, Compt. Rend. Acad. Bulg. Sci., 39:5 (1986), 31–34 | MR | Zbl

[6] Iscan M., Salimov A. A., “On Kähler-Norden manifolds”, Proc. Indian Acad. Sci. Math. Sci., 119:1 (2009), 71–80 | DOI | MR | Zbl

[7] Norden A. P., “On a certain class of four-dimensional A-spaces”, Izvestiya VUZ. Matematika, 1960, no. 4, 145–157 (in Russian) | MR | Zbl

[8] Salimov A. A. Iscan M., Etayo F., “Paraholomorphic B-manifold and its properties”, Topol. Appl., 154:4 (2007), 925–933 | DOI | MR | Zbl

[9] Kruchkovich G. I., “Hypercomplex structure on a manifold. I”, Trudy Seminara Vect. Tens. Anal., 16, Moscow Univ., M., 1972, 174–201 (in Russian) | MR

[10] Matsushita Y., “Four-dimensional Walker metrics and symplectic structure”, J. Geom. Phys., 52:1 (2004), 89–99 | DOI | MR | Zbl

[11] Goldberg S. I., “Integrability of almost Kahler manifolds”, Proc. Amer. Math. Soc., 21 (1969), 96–100 | DOI | MR | Zbl

[12] Matsushita Y., “Counterexamples of compact type to the Goldberg conjecture and various version of the conjecture”, Proc. of 8th Int. Workshop on Complex Structures and Vector Fields, eds. S. Dimiev, K. Sekigawa, World Scientific Publ., 2007, 222–233 | MR | Zbl

[13] Sekigawa K., “On some 4-dimensional compact Einstein almost Kähler manifolds”, Math. Ann., 271 (1985), 333–337 | DOI | MR | Zbl

[14] Sekigawa K., “On some compact Einstein almost Kähler manifolds”, J. Math. Soc. Japan, 36 (1987), 677–684 | DOI | MR

[15] Manev M., Mekerov D., “On Lie groups as quasi-Kähler manifolds with Killing Norden metric”, Adv. Geom., 8:3 (2008), 343–352 | DOI | MR | Zbl

[16] Salimov A. A., Iscan M., “Some properties of Norden–Walker metrics”, Kodai Math. J., 33 (2010), 283–293 | DOI | MR | Zbl