Tangent bundles and gauge groups
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 249-263 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The differentials $T^ka$ $(k\ge1)$ of a diffeomorphism $a$ of a smooth manifold $M$ induce in the fibers of the fiber bundles $T^kM,$ i.e., in the corresponding tangent spaces, linear transformations, which embody the action of the gauge group $\mathcal G_k$. This action extends in a natural way to the osculating subbundles $\mathrm{Osc}^{k-1}M\subset T^kM$.
Keywords: diffeomorphism of a smooth manifold, fiber bundles, action of the gauge group.
@article{UZKU_2011_153_3_a23,
     author = {M. Rahula and V. Balan},
     title = {Tangent bundles and gauge groups},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {249--263},
     year = {2011},
     volume = {153},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a23/}
}
TY  - JOUR
AU  - M. Rahula
AU  - V. Balan
TI  - Tangent bundles and gauge groups
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 249
EP  - 263
VL  - 153
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a23/
LA  - en
ID  - UZKU_2011_153_3_a23
ER  - 
%0 Journal Article
%A M. Rahula
%A V. Balan
%T Tangent bundles and gauge groups
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 249-263
%V 153
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a23/
%G en
%F UZKU_2011_153_3_a23
M. Rahula; V. Balan. Tangent bundles and gauge groups. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 249-263. http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a23/

[1] Ehresmann Ch., “Catégories doubles et catégories structurées”, C. R. Acad. Sci. Paris, 256 (1958), 1198–1201 | MR

[2] Vagner V. V., “Theory of differential objects and foundations of differential geometry”: Veblen O., Whitehead J. H. C., The Foundations of Differential Geometry, IL, Moscow, 1949, 135–223 (in Russian)

[3] Atanasiu G., Balan V., Brînzei N., Rahula M., Second Order Differential Geometry and Applications: Miron–Atanasiu Theory, Librokom, Moscow, 2010, 250 pp. (in Russian)

[4] Pradines J., “Suites exactes vectorielles doubles et connexions”, C. R. Acad. Sci. Paris, 278 (1974), 1587–1590 | MR | Zbl

[5] Atanasiu G., Balan V., Brînzei N., Rahula M., Differential Geometric Structures: Tangent Bundles, Connections in Bundles, Exponential Law in the Jet Space, Librokom, Moscow, 2010, 320 pp. (in Russian)

[6] Rahula M., “Tangent structures and analytical mechanics”, Balkan J. Geom. Appl., 16:1 (2011), 122–127 | MR | Zbl

[7] White E. J., The Method of Iterated Tangents with Applications in Local Riemannian Geometry, Pitman Adv. Publ. Program, Boston, Mass.–London, 1982, 252 pp. | MR | Zbl

[8] Bertram W., Differential Geometry, Lie Groups and Symmetric Spaces over General Base Fields and Rings, Memoirs of AMS, 900, 2008, 202 pp. | MR | Zbl