On deformed minisuperspace variables in quantum cosmology
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 228-234 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We present several examples in noncommutative quantum cosmology, using the WKB-type approximation with a deformation on the minisuperspace variables. This procedure gives a straightforward algorithm to incorporate noncommutativity to cosmology and inflation.
Keywords: noncommutative cosmology, quantum cosmology
Mots-clés : quasiclassical approximation.
@article{UZKU_2011_153_3_a20,
     author = {E. Mena and O. Obreg\'on and M. Sabido and E. Cano and C. Yee-Romero},
     title = {On deformed minisuperspace variables in quantum cosmology},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {228--234},
     year = {2011},
     volume = {153},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a20/}
}
TY  - JOUR
AU  - E. Mena
AU  - O. Obregón
AU  - M. Sabido
AU  - E. Cano
AU  - C. Yee-Romero
TI  - On deformed minisuperspace variables in quantum cosmology
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 228
EP  - 234
VL  - 153
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a20/
LA  - en
ID  - UZKU_2011_153_3_a20
ER  - 
%0 Journal Article
%A E. Mena
%A O. Obregón
%A M. Sabido
%A E. Cano
%A C. Yee-Romero
%T On deformed minisuperspace variables in quantum cosmology
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 228-234
%V 153
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a20/
%G en
%F UZKU_2011_153_3_a20
E. Mena; O. Obregón; M. Sabido; E. Cano; C. Yee-Romero. On deformed minisuperspace variables in quantum cosmology. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 228-234. http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a20/

[1] Szabo R. J., “Magnetic background and noncommutative field theory”, Int. J. Mod. Phys. A, 19 (2004), 1837–1861 | DOI | MR | Zbl

[2] Szabo R. J., “Quantum Field Theory on Noncommutative Spaces”, Phys. Rep., 378 (2003), 207–299 | DOI | MR | Zbl

[3] García-Compeán H., Obregón O., Ramírez C., “Noncommutative quantum cosmology”, Phys. Rev. Lett., 88 (2002), 161301-1–161301-4 | DOI | MR

[4] Gasperini M., Maharana J., Veneziano G., “Graceful exit in quantum string cosmology”, Nucl. Phys. B, 472 (1996), 349–360 | DOI | MR | Zbl

[5] García-Compeán H., Obregón O., Ramírez C., Sabido M., “Noncommutative self-dual gravity”, Phys. Rev. D, 68:4 (2003), 044015-1–044015-8 | DOI | MR

[6] Bañados M., Chandia O., Grandi N., Schaposnik F. A., Silva G. A., “Chern–Simons formulation of noncommutative gravity in three dimensions”, Phys. Rev. D, 64:8 (2001), 084012-1–084012-8 | DOI | MR

[7] Nishino H., Rajpoot S., “Teleparallel Complex Gravity as Foundation for Noncommutative Gravity”, Phys. Lett. B, 532:3–4 (2002), 334–344 | DOI | Zbl

[8] Barbosa G. D., Pinto-Neto N., “Noncommutative geometry and cosmology”, Phys. Rev. D, 70 (2004), 103512-1–103512-15 | DOI | MR

[9] Gamboa J., Loewe M., Rojas J. C., “Noncommutative quantum mechanics”, Phys. Rev. D, 64:6 (2001), 067901-1–067901-3 | DOI | MR

[10] Chaichian M., Sheikh-Jabbari M. M., Tureanu A., “Hydrogen Atom Spectrum and the Lamb Shift in Noncommutative QED”, Phys. Rev. Lett., 86:13 (2001), 2716–2719 | DOI

[11] Brandenberger R., Ho P. M., “Noncommutative spacetime, stringy spacetime uncertainty principle, and density fluctuations”, Phys. Rev. D, 66 (2020), 023517-1–023517-10 | DOI | MR

[12] Huang Q. G., Li M., “Power spectra in spacetime noncommutative inflation”, Nucl. Phys. B, 713 (2005), 219–234 | DOI