The Petrov algebraic classification and phase transitions in gravitational fields
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 29-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article shows the connection of the Petrov algebraic classification of gravitational fields with the theory of catastrophes as a generalized theory of phase transitions. We demonstrate the analogy between the transitions of the algebraic types of space-times and the phase transitions at the curvature tensor level (Weyl's matrices level) by the examples of the Petrov classification, the algebraic classification of four-dimensional local Euclidean spaces, and the derivation of the gravitational fields of lightlike sources.
Keywords: Petrov algebraic classification, gravitational fields, catastrophe theory, lightlike sources, lighton, helixon.
Mots-clés : phase transitions
@article{UZKU_2011_153_3_a2,
     author = {A. M. Baranov},
     title = {The {Petrov} algebraic classification and phase transitions in gravitational fields},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {29--41},
     year = {2011},
     volume = {153},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a2/}
}
TY  - JOUR
AU  - A. M. Baranov
TI  - The Petrov algebraic classification and phase transitions in gravitational fields
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 29
EP  - 41
VL  - 153
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a2/
LA  - ru
ID  - UZKU_2011_153_3_a2
ER  - 
%0 Journal Article
%A A. M. Baranov
%T The Petrov algebraic classification and phase transitions in gravitational fields
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 29-41
%V 153
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a2/
%G ru
%F UZKU_2011_153_3_a2
A. M. Baranov. The Petrov algebraic classification and phase transitions in gravitational fields. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 29-41. http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a2/

[1] Petrov A. Z., “O prostranstvakh, opredelyayuschikh polya tyagoteniya”, Dokl. AN SSSR, 81:2 (1951), 149–152 | MR | Zbl

[2] Petrov A. Z., “Klassifikatsiya prostranstv, opredelyayuschikh polya tyagoteniya”, Uchen. zap. Kazan. un-ta, 114, no. 8, 1954, 55–69 | MR

[3] Petrov A. Z., Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966, 495 pp. | MR

[4] Mitskevich N. V., Baranov A. M., Lugovtsov V. V., “Kompozitsiya tipov prostranstv po klassifikatsii Petrova”, Materialy dokl. IV Vsesoyuz. konf. “Sovremennye teoreticheskie i eksperimentalnye problemy teorii otnositelnosti i gravitatsii”, Minsk, 1976, 195–200

[5] Baranov A. M., Lugovtsov V. V., Mitskevich N. V., “Kompozitsiya prostranstv vtorogo vyrozhdennogo tipa po Petrovu”, Tez. dokl. Vsesoz. nauch. konf. po neevklid. geometrii “150 let geometrii Lobachevskogo” (Kazan), Izd-vo VINITI, M., 1976, 21

[6] Szekeres P., “The Gravitational Compass”, J. Math. Phys., 6:9 (1965), 1387–1391 | DOI | MR | Zbl

[7] Baranov A. M., “Catastrophe theory and algebraic classification of gravitational and electromagnetic fields”, Abstr. of Contributed Papers of 10th Int. Conf. on GRG, v. 1, Padova, Italy, 1983, 174–175

[8] Baranov A. M., “Teoriya katastrof i algebraicheskaya klassifikatsiya Petrova”, 200 let Kazan. un-tu, Sb. tez. yubil. nauch. konf. fiz. fak-ta KGU (Kazan, noyabr 2004 g.), Kazan, 2004, 107

[9] Baranov A. M., Mitskevich N. V., O kompozitsii prostranstv v obschei teorii otnositelnosti, Dep. v VINITI 13.07.76, No 2628-76, Un-t druzhby narodov im. P. Lumumby, M., 1976, 15 pp.

[10] Baranov A. M., Vozmuscheniya prostranstv i klassifikatsiya Petrova, Dep. v VINITI 13.07.76, No 2632-76, Un-t druzhby narodov im. P. Lumumby, M., 1976, 8 pp.

[11] Rozenfeld B. A., Mnogomernye prostranstva, Nauka, M., 1966, 647 pp. | MR

[12] Baranov A. M., “Algebraicheskaya klassifikatsiya chetyrekhmernykh lokalno evklidovykh prostranstv”, Izv. vuzov. Fizika, 1994, no. 11, 90–95 | MR | Zbl

[13] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v 10 t., v. 2, Teoriya polya, Nauka, M., 1988, 509 pp. | Zbl

[14] Pirani F. A. E., “Gravitational Waves in General Relativity. IV. The Gravitational Field of a Fast-movinig Particle”, Proc. R. Soc. L. A, 252 (1959), 96–101 | DOI | MR | Zbl

[15] Baranov A. M., Gravitatsionnye polya “svetopodobnykh” istochnikov, Dep. VINITI 13.07.76, No 2631-76, Un-t druzhby narodov im. P. Lumumby, M., 1976, 12 pp.

[16] Baranov A. M., “Svetopodobnye istochniki v obschei teorii otnositelnosti”, Vestn. Krasnoyar. gos. un-ta. Fiz.-matem. nauki, 2005, no. 7, 44–54

[17] Baranov A. M., “Gravitational fields of lightons and helixons in General Relativity”, Grav. Cosmol., 12:2–3 (2006), 100–102 | MR | Zbl

[18] Baranov A. M., “Svetopodobnyi predel shvartsshildopodobnogo istochnika kak katastrofa”, Gravitatsiya i elektromagnetizm, 5, Universitetskoe, Minsk, 1992, 27–31

[19] Baranov A. M., “Svetopodobnyi predel resheniya Kerra i konstruirovanie polya svetopodobnoi niti”, Izv. vuzov. Fizika, 1994, no. 10, 64–69 | MR | Zbl

[20] Newman E., Tamburino L., Unti T., “Empty-Space Generalization of the Schwarzschild Metric”, J. Math. Phys., 4:7 (1963), 915–923 | DOI | MR | Zbl

[21] Misner S. W., “The Flatter Regions of Newman, Unti and Tamburino's Generalized Schwarzschild Space”, J. Math. Phys., 4:7 (1963), 924–937 | DOI | MR

[22] Baranov A. M., “Svetopodobnyi predel istochnika NUT”, Gravitatsiya i teoriya otnositelnosti, 24, Izd-vo Kazan. un-ta, Kazan, 1987, 11–19

[23] Baranov A. M., “Lightlike Limits of NUT and Kerr Solutions as catastrophes”, Tez. dokl. Mezhdunar. konf. “Geometrizatsiya fiziki III”, Kheter, Kazan, 1997, 4–5

[24] Kerr R. P., “Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metric”, Phys. Rev. Lett., 11:5 (1963), 237–238 | DOI | MR | Zbl

[25] Baranov A. M., “Lightlike spinning source”, Abstr. of Contributed Papers of 9th Int. Conf. on GRG, v. 1, Jena, GDR, 1980, 6