Internal space-time symmetries according to Einstein, Wigner, Dirac, and Feynman
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 204-214 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

When Einstein formulated his special relativity in 1905, he established the law of Lorentz transformations for point particles. It is now known that particles have internal space-time structures. Particles, such as photons and electrons, have spin variables. Protons and other hadrons are regarded as bound states of more fundamental particles called quarks which have their internal variables. It is still one of the most outstanding problems whether these internal space-time variables are transformed according to Einstein's law of Lorentz transformations. It is noted that Wigner, Dirac, and Feynman made important contributions to this problem. By integrating their efforts, it is then shown possible to construct a picture of the internal space-time symmetry consistent with Einstein's Lorentz covariance.
Keywords: internal space-time symmetries, Wigner's little groups, Lorentz covariance, Lorentz squeeze, standing waves, bound states, harmonic oscillators.
@article{UZKU_2011_153_3_a18,
     author = {Y. S. Kim and M. E. Noz},
     title = {Internal space-time symmetries according to {Einstein,} {Wigner,} {Dirac,} and {Feynman}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {204--214},
     year = {2011},
     volume = {153},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a18/}
}
TY  - JOUR
AU  - Y. S. Kim
AU  - M. E. Noz
TI  - Internal space-time symmetries according to Einstein, Wigner, Dirac, and Feynman
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 204
EP  - 214
VL  - 153
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a18/
LA  - en
ID  - UZKU_2011_153_3_a18
ER  - 
%0 Journal Article
%A Y. S. Kim
%A M. E. Noz
%T Internal space-time symmetries according to Einstein, Wigner, Dirac, and Feynman
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 204-214
%V 153
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a18/
%G en
%F UZKU_2011_153_3_a18
Y. S. Kim; M. E. Noz. Internal space-time symmetries according to Einstein, Wigner, Dirac, and Feynman. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 204-214. http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a18/

[1] Bell J. S., Speakable and Unspeakable in Quantum Mechanics, Cambridge Univ. Press, Cambridge, 2004, 288 pp. | MR

[2] Wigner E., “On Unitary Representations of the Inhomogeneous Lorentz Group”, Ann. Math., 40:1 (1939), 149–204 | DOI | MR | Zbl

[3] Dirac P. A. M., “The Quantum Theory of the Emission and Absorption of Radiation”, Proc. Roy. Cocks. L. A, 114 (1927), 243–265 | DOI | Zbl

[4] Dirac P. A. M., “Unitary Representations of the Lorentz Group”, Proc. Roy. Cocci. L. A, 183 (1945), 284–295 | DOI | MR | Zbl

[5] Dirac P. A. M., “Forms of Relativistic Dynamics”, Rev. Mod. Phys., 21:3 (1949), 392–399 | DOI | MR | Zbl

[6] Dirac P. A. M., “A Remarkable Representation of the $3+2$ de Sitter Group”, J. Math. Phys., 4:7 (1963), 901–909 | DOI | MR | Zbl

[7] Feynman R. P., Kislinger M., Ravndal F., “Current Matrix Elements from a Relativistic Quark Model”, Phys. Rev. D, 3:11 (1971), 2706–2732 | DOI

[8] Feynman R. P., “Very High-Energy Collisions of Hadrons”, Phys. Rev. Lett., 23:24 (1969), 1415–1417 | DOI

[9] Feynman R. P., “The Behavior of Hadron Collisions at Extreme Energies in High Energy Collisions”, Proc. the Third Int. Conf. Stony Brook, N.Y., eds. C. N. Yang et al., Gordon and Breach, N.Y., 1969, 237–249

[10] Kim Y. S., “Optical activities as computing resources for space-time symmetries”, J. Mod. Optics, 57:1 (2010), 17–22 | DOI | MR | Zbl

[11] Kim Y. S., Wigner E. P., “Space-time geometry of relativistic particles”, J. Math. Phys., 31:1 (1990), 55–59 | DOI | MR

[12] Kim Y. S., Noz M. E., “Covariant harmonic oscillators and the quark model”, Phys. Rev. D, 8:10 (1973), 3521–3627 | DOI | MR

[13] Kim Y. S., Noz M. E., Phase Space Picture of Quantum Mechanics: Group Theoretical Approach, World Sci. Publ. Comp., Singapore, 1991, 334 pp. | MR

[14] Kim Y. S., Noz M. E. Oh S. H., “Representations of the Poincaré group for relativistic extended hadrons”, J. Math. Phys., 20:7 (1979), 1341–1344 | DOI

[15] Kim Y. S., Noz M. E., Theory and Applications of the Poincaré Group, D. Reidel Publ. Comp., Dordrecht, The Netherlands, 1986, 331 pp. | MR

[16] Kim Y. S., Noz M. E., “Covariant Harmonic Oscillators and the Parton Picture”, Phys. Rev. D, 15:1 (1977), 335–338 | DOI

[17] Feynman R. P., Statistical mechanics: a set of lectures, W. A. Benjamin, Reading, MA, 1972, 366 pp. | MR

[18] Kim Y. S., Wigner E. P., “Entropy and Lorentz Transformations”, Phys. Lett. A, 147:7 (1990), 343–347 | DOI | MR

[19] Han D., Kim Y. S., Noz M. E., “Illustrative Example of Feynman's Rest of the Universe”, Am. J. Phys., 67:1 (1999), 61–66 | DOI

[20] Hussar P. E., “Valons and harmonic oscillators”, Phys. Rev. D, 23:11 (1981), 2781–2783 | DOI

[21] Kim Y. S., “Observable gauge transformations in the parton picture”, Phys. Rev. Lett., 63:4 (1989), 348–351 | DOI | MR

[22] Kim Y. S., Noz M. E., “Coupled oscillators, entangled oscillators, and Lorentz-covariant harmonic oscillators”, J. Opt. B: Quantum Semiclass. Opt., 7:12 (2005), S458–S467 | DOI

[23] Hofstadter R., McAllister R. W., “Electron Scattering from the Proton”, Phys. Rev., 98:1 (1955), 217–218 | DOI

[24] Fujimura K., Kobayashi T., Namiki M., “Nucleon Electromagnetic Form Factors at High Momentum Transfers in an Extended Particle Model Based on the Quark Model”, Prog. Theor. Phys., 43:1 (1970), 73–79 | DOI