Mots-clés : conformal structure
@article{UZKU_2011_153_3_a15,
author = {G. Hall},
title = {Some developments of {Petrov's} work on conformal and projective structure},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {175--184},
year = {2011},
volume = {153},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a15/}
}
TY - JOUR AU - G. Hall TI - Some developments of Petrov's work on conformal and projective structure JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2011 SP - 175 EP - 184 VL - 153 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a15/ LA - en ID - UZKU_2011_153_3_a15 ER -
G. Hall. Some developments of Petrov's work on conformal and projective structure. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 175-184. http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a15/
[1] Petrov A. Z., “Klassifikacya prostranstv, opredelyayushchikh polya tyagoteniya”, Uchenye Zapiski Kazanskogo Universiteta, 114, no. 8, 1954, 55–69 | MR
[2] Petrov A. Z., “The Classification of Spaces Defining Gravitational Fields”, Gen. Rel. Grav., 32:8 (2000), 1665–1685 | DOI | MR | Zbl
[3] Petrov A. Z., Einstein Spaces, Pergamon Press, Oxford, 1969, 411 pp. | MR | Zbl
[4] Stephani H., Kramer D., MacCallum M. A. H., Hoenselears C., Herlt E., Exact Solutions of Einstein's Field Equations, Cambridge Univ. Press, Cambridge, 2003, 732 pp. | Zbl
[5] Ehlers J., Kundt W., “Exact Solutions of the Gravitational Field Equations”, Gravitation: an introduction to current research, ed. L. Witten, N.Y., 1962, 49–101 | MR
[6] Hall G. S., Symmetries and Curvature Structure in General Relativity, World Sci., Singapore, 2004, 440 pp. | MR
[7] Hall G. S., Lonie D. P., “The principle of equivalence and projective structure in spacetimes”, Class. Quant. Grav., 24:14 (2007), 3617–3636 | DOI | MR | Zbl
[8] Hall G. S., Lonie D. P., “Projective equivalence of Einstein spaces in general relativity”, Class. Quant. Grav., 26:12 (2009), 125009-1–125009-10 | DOI | MR
[9] Kiosak V., Matveev V., “Complete Einstein Metrics are Geodesically Rigid”, Comm. Math. Phys., 289:1 (2009), 383–400 | DOI | MR | Zbl
[10] Hall G. S., Lonie D. P., “The principle of equivalence and cosmological metrics”, J. Math. Phys., 49:2 (2008), 022502-1–022502-13 | DOI | MR | Zbl
[11] Mikes J., Hinterleitner I., Kiosak V. A., “On the Theory of geodesic Mappings of Einstein Spaces and their Generalizations”, AIP Conf. Proc., 861 (2006), 428–435 | DOI
[12] Mikes J., Kiosak V., Vanzurova A., Geodesic Mappings of manifolds with affine connection, Palacky Univ. Press, Olomouc, 2008, 220 pp. | MR | Zbl
[13] Hall G. S., Lonie D. P., “Holonomy and Projective Equivalence in 4-Dimensional Lorentz Manifolds”, SIGMA, 5 (2009), 066-1–066-23 | MR
[14] Bel L., “Leséetats de radiation et le problème de l'énergie en relativitégénérale”, Cah. de Phys., 16 (1962), 59–80 | MR
[15] Géhéniau J., “Une classification des espaces einsteiniens”, C. R. Acad. Sci. (Paris), 244 (1957), 723–724 | MR | Zbl
[16] Debever R., “Tenseur de super-énergie, tenseur de Riemann: cas singuliers”, C. R. Acad. Sci. (Paris), 249 (1959), 1744–1746 | MR | Zbl
[17] Sachs R. K., “Gravitational Waves in General Relativity. VI. The Outgoing Radiation Condition”, Proc. R. Soc. Lond. A, 264 (1961), 309–338 | DOI | MR | Zbl
[18] Penrose R., “A spinor approach to general relativity”, Anns. Phys., 10:2 (1960), 171–201 | DOI | MR | Zbl
[19] Pirani F. A. E., “Invariant Formulation of Gravitational Radiation Theory”, Phys. Rev., 105:3 (1957), 1089–1099 | DOI | MR | Zbl
[20] Sinyukov N. S., Geodesic Mappings of Riemannian Spaces, Nauka, M., 1979, 257 pp. (in Russian) | MR | Zbl
[21] Hall G. S., Lonie D. P., “Projective Structure and Holonomy in 4-dimensional Lorentz Manifolds”, J. Geom. Phys., 61:2 (2011), 381–399 | DOI | MR | Zbl
[22] Weyl H., “Zur Infinitesimalgeometrie: Einordnung der projektiven und der kon formen Auffassung”, Göttinger Nachrichten., 1921, 99–112 | Zbl
[23] Kobayashi S., Nomizu K., Foundations of Differential Geometry, v. 1, Intersci. Publ., N.Y., 1963, 170 pp. | MR | Zbl
[24] Schell J. F., “Classification of Four Dimensional Riemannian Spaces”, J. Math. Phys., 2:2 (1961), 202–206 | DOI | MR | Zbl
[25] Eisenhart L. P., Riemannian Geometry, Princeton Univ. Press, Princeton, 1966, 313 pp. | MR
[26] Thomas T. Y., Differential Invariants of Generalised Spaces, Cambridge Univ. Press, Cambridge, 1934, 251 pp. | Zbl
[27] Hall G. S., Lonie D. P., “Holonomy groups and spacetimes”, Class. Quant. Grav., 17:6 (2000), 1369–1383 | DOI | MR
[28] Hall G. S., Wang Z., “Projective Structure in 4-Dimensional Manifolds with Positive Definite Metrics”, J. Geom. Phys., 62:2 (2012), 449–463 | DOI | MR | Zbl
[29] Hall G. S., Lonie D. P., “Projective Structure and Holonomy in General Relativity”, Class. Quant. Grav., 28:8 (2011), 083101-1–083101-17 | DOI | MR