@article{UZKU_2011_153_3_a14,
author = {A. S. Galaev},
title = {On the {Einstein} equation on {Lorentzian} manifolds with parallel distributions of isotropic lines},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {165--174},
year = {2011},
volume = {153},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a14/}
}
TY - JOUR AU - A. S. Galaev TI - On the Einstein equation on Lorentzian manifolds with parallel distributions of isotropic lines JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2011 SP - 165 EP - 174 VL - 153 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a14/ LA - en ID - UZKU_2011_153_3_a14 ER -
%0 Journal Article %A A. S. Galaev %T On the Einstein equation on Lorentzian manifolds with parallel distributions of isotropic lines %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2011 %P 165-174 %V 153 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a14/ %G en %F UZKU_2011_153_3_a14
A. S. Galaev. On the Einstein equation on Lorentzian manifolds with parallel distributions of isotropic lines. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 165-174. http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a14/
[1] Walker A. G., “On parallel fields of partially null vector spaces”, Quart. J. Math. Oxford Ser., 20 (1949), 135–145 | DOI | MR | Zbl
[2] Brannlund J., Coley A., Hervik S., “Supersymmetry, holonomy and Kundt spacetimes”, Class. Quantum Grav., 25 (2008), 195007-1–195007-10 | DOI | MR
[3] Bryant R., “Pseudo-Riemannian metrics with parallel spinor fields and vanishing Ricci tensor”, Sémin. Congr., 4 (2000), 53–94 | MR | Zbl
[4] Figueroa-O'Farrill J. M., “Breaking the M-waves”, Class. Quantum Grav., 17:15 (2000), 2925–2947 | DOI | MR | Zbl
[5] Gibbons G. W., Pope C. N., “Time-Dependent Multi-Centre Solutions from New Metrics with Holonomy $\mathrm{Sim}(n-2)$”, Class. Quantum Grav., 25 (2008), 125015-1–125015-21 | DOI | MR
[6] Schimming R., “Riemannsche Räume mit ebenfrontiger und mit ebener Symmetrie”, Math. Nachr., 59 (1974), 129–162 | DOI | MR | Zbl
[7] Galaev A. S., Leistner T., “On the local structure of Lorentzian Einstein manifolds with parallel distribution of null lines”, Class. Quantum Grav., 27 (2010), 225003-1–225003-16 | DOI | MR
[8] Lewandowski J., “Reduced holonomy group and Einstein equations with a cosmological constant”, Class. Quantum Grav., 9:10 (1992), L147–L151 | DOI | MR | Zbl
[9] Hall G. S., Lonie D. P., “Holonomy groups and spacetimes”, Class. Quantum Grav., 17:6 (2000), 1369–1382 | DOI | MR | Zbl
[10] Galaev A. S., “Examples of Einstein spacetimes with recurrent null vector fields”, Class. Quantum Grav., 28 (2011), 175022-1–175022-6 | DOI | MR
[11] Goldberg J. N., Kerr R. P., “Some applications of the infinitesimal-holonomy group to the Petrov classification of Einstein spaces”, J. Math. Phys., 2 (1961), 327–332 | DOI | MR | Zbl
[12] Goldberg J. N., Kerr R. P., “Einstein spaces with four-parameter holonomy groups”, J. Math. Phys., 2 (1961), 332–336 | DOI | MR | Zbl
[13] Schell J. F., “Classification of four-dimensional Riemannian spaces”, J. Math. Phys., 2 (1961), 202–206 | DOI | MR | Zbl
[14] Besse A. L., Einstein manifolds, Springer-Verlag, Berlin–Heidelberg–New York, 1987, 510 pp. | MR | Zbl
[15] Galaev A. S., “Holonomy of Einstein Lorentzian manifolds”, Class. Quantum Grav., 27 (2010), 075008-1–075008-13 | DOI | MR
[16] Galaev A. S., Leistner T., “Holonomy groups of Lorentzian manifolds: classification, examples, and applications”, Recent developments in pseudo-Riemannian geometry, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008, 53–96 | MR | Zbl
[17] Astrahancev V. V., “The holonomy groups of four-dimensional pseudo-Riemannian spaces”, Mat. Zametki, 9:1 (1971), 59–66 | MR | Zbl