The Petrov classification and vacuum dark fluid
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 154-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Petrov classification of stress-energy tensors makes it possible to introduce a unified description of dark energy and dark matter as a vacuum dark fluid based on the space-time symmetry. In this approach a vacuum dark energy is described by a variable cosmological term whose symmetry is reduced as compared with the Einstein cosmological term which allows a vacuum energy to be evolving and clustering. The relevant class of solutions to the Einstein equations implies also the existence of compact vacuum objects generically related to a dark energy: regular black holes, their remnants and self-gravitating vacuum solitons with de Sitter vacuum interior – which can be responsible for observational effects typically related to a dark matter. The mass of objects with de Sitter interior is generically related to vacuum dark energy and to breaking of space-time symmetry.
Keywords: dark energy, dark matter, regular black holes and solitons with de Sitter core.
@article{UZKU_2011_153_3_a13,
     author = {I. Dymnikova},
     title = {The {Petrov} classification and vacuum dark fluid},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {154--164},
     year = {2011},
     volume = {153},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a13/}
}
TY  - JOUR
AU  - I. Dymnikova
TI  - The Petrov classification and vacuum dark fluid
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 154
EP  - 164
VL  - 153
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a13/
LA  - en
ID  - UZKU_2011_153_3_a13
ER  - 
%0 Journal Article
%A I. Dymnikova
%T The Petrov classification and vacuum dark fluid
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 154-164
%V 153
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a13/
%G en
%F UZKU_2011_153_3_a13
I. Dymnikova. The Petrov classification and vacuum dark fluid. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 154-164. http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a13/

[1] Anderson P. R., “Attractor states and infrared scaling in de Sitter space”, Phys. Rev. D, 62:12 (2000), 124019-1–124019-24 | DOI | MR

[2] Kirsten K., Garriga J., “Massless minimally coupled fields in de Sitter space: O(4)-symmetric states versus de Sitter invariant vacuum”, Phys. Rev. D, 48:2 (1993), 567–577 | DOI | MR

[3] Gliner E. B., “Algebraic properties of the energy-momentum tensor and vacuum-like”, Sov. Phys. JETP, 22:2 (1966), 378–383

[4] Dymnikova I., “Vacuum nonsingular black hole”, Gen. Rel. Grav., 24:3 (1992), 235–242 | DOI | MR

[5] Dymnikova I., “The algebraic structure of a cosmological term in spherically symmetric solutions”, Phys. Lett. B, 472:1–2 (2000), 33–38 | DOI | MR | Zbl

[6] Dymnikova I., Galaktionov E., “Vacuum dark fluid”, Phys. Lett. B, 645:4 (2007), 358–364 | DOI | MR | Zbl

[7] Dymnikova I., “The cosmological term as a source of mass”, Class. Quant. Grav., 19:4 (2002), 725–739 | DOI | MR | Zbl

[8] Copeland E. J., “Models of Dark Energy”, AIP Conf. Proc., 1241 (2010), 125–131 | DOI

[9] Bronnikov K. A., Dobosz A., Dymnikova I., “Nonsingular vacuum cosmologies with a variable cosmological term”, Class. Quant. Grav., 20:16 (2003), 3797–3814 | DOI | MR | Zbl

[10] Dymnikova I., Soltysek B., “Spherically Symmetric Space-Time with Two Cosmological Constants”, Gen. Rel. Grav., 30:12 (1998), 1775–1793 | DOI | MR | Zbl

[11] Dymnikova I., “De Sitter–Schwarzschild black hole: its particlelike core and thermodynamical properties”, Int. J. Mod. Phys. D, 5:5 (1996), 529–540 | DOI | MR

[12] Dymnikova I., Korpusik M., “Regular black hole remnants in de Sitter space”, Phys. Lett. B, 685:1 (2010), 12–18 | DOI | MR

[13] Dymnikova I., Galaktionov E., “Stability of a vacuum non-singular black hole”, Class. Quant. Grav., 22:12 (2005), 2331–2357 | DOI | MR | Zbl

[14] Bergström L., “Dark Matter Candidates”, AIP Conf. Proc., 1241 (2010), 49–63 | DOI

[15] Olive K. A., Dark Energy and Dark Matter, 2010, 12 pp., arXiv: 1001.5014v1[hep-ph]

[16] Böhmer C. G., Harko T., “Does the cosmological constant imply the existence of a minimum mass?”, Phys. Lett. B, 630:3–4 (2005), 73–77 | DOI

[17] Arbey A., “Dark fluid: A complex scalar field to unify dark energy and dark matter”, Phys. Rev. D, 74:4 (2006), 043516-1–043516-7 | DOI

[18] Ellis J., “Dark matter and dark energy: summary and future directions”, Phil. Trans. R. Soc. Lond. A, 361 (2003), 2607–2627 | DOI | Zbl

[19] MacGibbon J. H., “Can Planck-mass relics of evaporating black holes close the Universe?”, Nature, 329 (1987), 308–309 | DOI

[20] Dymnikova I., “Regular Black Hole Remnants”, AIP Conf. Proc., 1241 (2010), 361–368 | DOI

[21] Ahluwalia D. V., Dymnikova I., “A theoretical case for negative mass-square for sub-eV particles”, Int. J. Mod. Phys. D, 12:9 (2003), 1787–1794 | DOI

[22] Dymnikova I., “Regular electrically charged vacuum structures with de Sitter centre in nonlinear electrodynamics coupled to general relativity”, Class. Quant. Grav., 21:18 (2004), 4417–4428 | DOI | MR | Zbl

[23] Dymnikova I., “Spinning superconducting electrovacuum soliton”, Phys. Lett. B, 639:3–4 (2006), 368–372 | DOI | MR | Zbl

[24] Landau L. D., Lifshitz E. M., The classical theory of fields, Pergamon Press, Oxford, 1975, 402 pp. | MR

[25] Dymnikova I., Dobosz A., Filchenkov M., Gromov A., “Universes inside a black hole”, Phys. Lett. B, 506:3–4 (2001), 351–361 | DOI

[26] Bronnikov K., Dymnikova I., “Regular homogeneous T-models with vacuum dark fluid”, Class. Quant. Grav., 24:23 (2007), 5803–5817 | DOI | MR

[27] Dymnikova I., Fil'chenkov M., “Gauge-noninvariance of quantum cosmology and vacuum dark energy”, Phys. Lett. B, 635:4 (2006), 181–185 | DOI | MR | Zbl

[28] Padmanabhan T., “Classical and quantum thermodynamics of horizons in spherically symmetric spacetimes”, Class. Quant. Grav., 19:21 (2002), 5387–5408 | DOI | MR | Zbl

[29] Coleman S., “Classical Lumps and Their Quantum Descendants”, New Phenomena in Subnuclear Physics, ed. A. Zichichi, Plenum Press, N.Y., 1977, 297–421 | DOI

[30] Einstein A., “On the Generalized Theory of Gravitation”, Sci. Amer., 182:4 (1952), 13–17 | DOI

[31] Mazur P. O., Mottola E., Gravitational Condensate Stars: An Alternative to Black Holes, 2002, 4 pp., arXiv: gr-qc/0109035v5

[32] Dymnikova I., Poszwa A., Sołtysek B., “Geodesic Portrait of de Sitter–Schwarzschild Spacetime”, Grav. Cosmol., 14:3 (2008), 262–275 | DOI | MR | Zbl

[33] Gürses M., Gürsey F., “Lorentz covariant treatment of the Kerr–Schild geometry”, J. Math. Phys., 16:12 (1975), 2385–2390 | DOI | MR

[34] Dymnikova I., Sakharov A., Ulbricht J., Minimal Length Scale in Annihilation, 2009, 16 pp., arXiv: 0907.0629v1