@article{UZKU_2011_153_3_a11,
author = {Y. Choquet-Bruhat and P. T. Chru\'sciel and J. M. Mart{\'\i}n-Garc{\'\i}a},
title = {An existence theorem for the {Cauchy} problem on the light-cone for the vacuum {Einstein} equations with near-round analytic data},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {115--138},
year = {2011},
volume = {153},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a11/}
}
TY - JOUR AU - Y. Choquet-Bruhat AU - P. T. Chruściel AU - J. M. Martín-García TI - An existence theorem for the Cauchy problem on the light-cone for the vacuum Einstein equations with near-round analytic data JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2011 SP - 115 EP - 138 VL - 153 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a11/ LA - en ID - UZKU_2011_153_3_a11 ER -
%0 Journal Article %A Y. Choquet-Bruhat %A P. T. Chruściel %A J. M. Martín-García %T An existence theorem for the Cauchy problem on the light-cone for the vacuum Einstein equations with near-round analytic data %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2011 %P 115-138 %V 153 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a11/ %G en %F UZKU_2011_153_3_a11
Y. Choquet-Bruhat; P. T. Chruściel; J. M. Martín-García. An existence theorem for the Cauchy problem on the light-cone for the vacuum Einstein equations with near-round analytic data. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 115-138. http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a11/
[1] Choquet-Bruhat Y., Chrusciel P. T., Martin-Garcia J. M., “The Cauchy problem on a characteristic cone for the Einstein equations in arbitrary dimensions”, Ann. Henri Poincare, 12:3 (2011), 419–482 | DOI | MR | Zbl
[2] Rendall A. D., “Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations”, Proc. R. Soc. London A, 427 (1990), 221–239 | DOI | MR | Zbl
[3] Damour T., Schmidt B., “Reliability of perturbation theory in general relativity”, J. Math. Phys., 31 (1990), 2441–2453 | DOI | MR | Zbl
[4] Choquet-Bruhat Y., Chruściel P. T., Martín-García J. M., “An existence theorem for the Cauchy problem on a characteristic cone for the Einstein equations”, Contemporary Mathematics, 554 (2011), 73–81 | DOI | MR | Zbl
[5] Chruściel P. T., Jezierski J., On free general relativistic initial data on the light cone, 2010, arXiv: 1010.2098v1 | MR
[6] Choquet-Bruhat Y., DeWitt-Morette C., Analysis, manifolds and physics, Part II, North-Holland Publ. Co., Amsterdam, 2000, 560 pp. | MR | Zbl
[7] Choquet-Bruhat Y., General relativity and the Einstein equations, Oxford Univ. Press, Oxford, 2009, 840 pp. | MR | Zbl