Closed $G$-structures defined by three-webs
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 22-28

Voir la notice du chapitre de livre provenant de la source Math-Net.Ru

We introduce the notion of $1$-digit identity of order $k$ and prove the theorem: if in coordinate loops of analytic three-web $W$ there hold $k-1$ independent identities of order $k$, $G$-structure defined by this web is a closed structure of class not higher than $2k$.
Keywords: multidimensional three-web, closed $G$-structure, coordinate loop of a three-web, $1$-digit identity of $k$-th order.
@article{UZKU_2011_153_3_a1,
     author = {M. A. Akivis and A. M. Shelekhov},
     title = {Closed $G$-structures defined by three-webs},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {22--28},
     publisher = {mathdoc},
     volume = {153},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a1/}
}
TY  - JOUR
AU  - M. A. Akivis
AU  - A. M. Shelekhov
TI  - Closed $G$-structures defined by three-webs
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 22
EP  - 28
VL  - 153
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a1/
LA  - ru
ID  - UZKU_2011_153_3_a1
ER  - 
%0 Journal Article
%A M. A. Akivis
%A A. M. Shelekhov
%T Closed $G$-structures defined by three-webs
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 22-28
%V 153
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a1/
%G ru
%F UZKU_2011_153_3_a1
M. A. Akivis; A. M. Shelekhov. Closed $G$-structures defined by three-webs. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 3, pp. 22-28. http://geodesic.mathdoc.fr/item/UZKU_2011_153_3_a1/