Calculation of semiconductor band structure based on density functional theory and many-body perturbation theory
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 1, pp. 85-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper describes in detail the energy band stucture calculation method for solids. The calculation results are given for three semiconductors with different bandgap values. The electronic wavefunctions and energy levels in the first approximation are obtained using density functional theory (DFT). The quasiparticle energy levels calculation mechanism is described based on the DFT results and many-body perturbation theory in the GW approximation. Energy eigenvalues inside the Brillouin zone are obtained with a state-of-the-art accuracy using high convergence parameters and Wannier interpolation. Quasiparticle states are found to have good agreement with experimental data. The advantages and limitations of the utilized approach are mentioned.
Keywords: density functional theory, GW approximation, eigenenergy, band structure, quasiparticle energy levels
Mots-clés : electron transition, dispersion relations.
@article{UZKU_2011_153_1_a7,
     author = {T. T. Bazhirov and M. Kh. Salakhov},
     title = {Calculation of semiconductor band structure based on density functional theory and many-body perturbation theory},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {85--100},
     year = {2011},
     volume = {153},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a7/}
}
TY  - JOUR
AU  - T. T. Bazhirov
AU  - M. Kh. Salakhov
TI  - Calculation of semiconductor band structure based on density functional theory and many-body perturbation theory
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 85
EP  - 100
VL  - 153
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a7/
LA  - ru
ID  - UZKU_2011_153_1_a7
ER  - 
%0 Journal Article
%A T. T. Bazhirov
%A M. Kh. Salakhov
%T Calculation of semiconductor band structure based on density functional theory and many-body perturbation theory
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 85-100
%V 153
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a7/
%G ru
%F UZKU_2011_153_1_a7
T. T. Bazhirov; M. Kh. Salakhov. Calculation of semiconductor band structure based on density functional theory and many-body perturbation theory. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 1, pp. 85-100. http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a7/

[1] Dreizler R., Gross E., Density Functional Theory, Plenum Press, N.Y., 1995, 377 pp.

[2] Hohenberg P., Kohn W., “Inhomogeneous electron gas”, Phys. Rev. B, 136:3 (1964), B864–B871 | DOI | MR

[3] Kohn W., Sham L. J., “Self-consistent equations including exchange and correlation effects”, Phys. Rev. A, 140:4 (1965), A1133–A1138 | DOI | MR

[4] Ceperley D. M., Alder B. J., “Ground state of the electron gas by a stochastic method”, Phys. Rev. Lett., 45:7 (1980), 566–569 | DOI

[5] Perdew J. P., Zunger A., “Self-interaction correction to density-functional approximations for many-electron systems”, Phys. Rev. B, 23:10 (1981), 5048–5079 | DOI

[6] Perdew J. P. et al., “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation”, Phys. Rev. B, 46:11 (1992), 6671–6687 | DOI

[7] Yu P., Cardona M., Fundamentals of semiconductors: physics and materials properties, Springer, London, 2009, 775 pp.

[8] Hedin L., “New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem”, Phys. Rev. A, 139:3 (1965), A796–A823 | DOI

[9] Hybertsen M. S., Louie S. G., “First-Principles Theory of Quasiparticles: Calculation of Band Gaps in Semiconductors and Insulators”, Phys. Rev. Lett., 55:13 (1985), 1418–1421 | DOI

[10] Gorbatov O. I., “K probleme rascheta energii zapreschennoi zony $\mathrm{MgO}$ v ramkakh teorii funktsionala elektronnoi plotnosti”, Elektr. zhurn. “Fazovye perekhody, uporyadochennye sostoyaniya i novye materialy”, 2007, no. 1, svobodnyi http://ptosnm.ru/_files/Moduls/catalog/items/2007_1_7.pdf

[11] Mostofi A. A., Yates J. R., Lee Y.-S., Souza I., Vanderbilt D., Marzari N., “Wannier90: A tool for obtaining maximally-localised Wannier functions”, Comput. Phys. Commun., 178:9 (2008), 685–699 | DOI | Zbl

[12] Zhu X., Louie S. G., “Quasiparticle band structure of thirteen semiconductors and insulators”, Phys. Rev. B, 43:17 (1991), 14142–14156 | DOI

[13] Landau L. D., Lifshits E. M., Kurs teoreticheskoi fiziki, v 10 t., v. III, VIII, IX, Fizmatlit, M., 2003

[14] Bogolyubov H. H., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1984, 598 pp. | MR

[15] Abrikosov A. A., Gorkov L. P., Dzyaloshinskii I. E., Metody kvantovoi teorii polya v statisticheskoi fizike, Dobrosvet, M., 1998, 514 pp.

[16] Mahan G. D., Many-Particle Physics, Plenum Press, N.Y., 1990, 1032 pp. | MR

[17] Baroni S., Corso A. D., de Gironcoli S., Gianozzi P. http://www.pwscf.org/

[18] Ihm J., Cohen M. L., “Momentum-space formalism for the total energy of solids”, J. Phys. C: Solid State Phys., 12:21 (1979), 4409–4422 | DOI

[19] Troullier N., Martins J. L., “Efficient pseudopotentials for plane-wave calculations”, Phys. Rev. B, 43:3 (1991), 1993–2006 | DOI

[20] Salpeter E. E., Bethe H. A., “A relativistic equation for bound-state problems”, Phys. Rev., 84:6 (1951), 1232–1242 | DOI | MR | Zbl

[21] Hybertsen M. S., Louie S. G., “Electron correlations in semiconductors and insulators: Band gaps and quasiparticle energies”, Phys. Rev. B, 34:8 (1986), 5390–5413 | DOI

[22] Godby R. W., Schlüter M., Sham L. J., “Accurate Exchange-Correlation Potential for Silicon and Its Discontinuity on Addition of an Electron”, Phys. Rev. Lett., 56:22 (1986), 2415–2418 | DOI

[23] Friedrich C., Schindlmayr A., “Many-body perturbation theory: the GW approximation”, Computational Nanoscience: Do it yourself!, NIC Series, 31, 2006, 335–355

[24] Keyling R., Schone W. D., Ekardt W., “Comparison of the lifetime of excited electrons in noble metals”, Phys. Rev. B, 61:3 (2000), 1670–1673 | DOI

[25] Estrera J. P., Duncan W. M., Glosser R., “Complex Airy analysis of photoreflectance spectra for III-V semiconductors”, Phys. Rev. B, 49:11 (1994), 7281–7294 | DOI

[26] Aspnes D. E., Olson C. G., Lynch D. W., “Ordering and absolute energies of $L_6^c$ and $X_6^c$ conduction band minima in $\mathrm{GaAs}$”, Phys. Rev. Lett., 37:12 (1976), 766–769 | DOI

[27] Monemar B., “Fundamental Energy Gaps of $\mathrm{AlAs}$ and $\mathrm{AlP}$ from Photoluminescence Excitation Spectra”, Phys. Rev. B, 8:12 (1973), 5711–5718 | DOI

[28] Johansson L. I., Hagström S. B. M., “Core Level and Band Structure Energies of the Alkali Halides $\mathrm{LiF,LiCl}$ and $\mathrm{LiBr}$ Studied by ESCA”, Phys. Scr., 14:1–2 (1976), 55–59 | DOI

[29] Heyd J., Scuseria G. E., “Efficient hybrid density functional calculations in solids: assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional”, J. Chem. Phys., 121:3 (2004), 1187–1192 | DOI

[30] Shishkin M., Kresse G., “Self-consistent GW calculations for semiconductors and insulators”, Phys. Rev. B, 75:23 (2007), 235102-1–235102-9 | DOI

[31] Remediakis I. N., Kaxiras E., “Band-structure calculations for semiconductors within generalized-density-functional theory”, Phys. Rev. B, 59:8 (1999), 5536–5543 | DOI

[32] Shmazaki T., Asai Y., “Energy band structure calculations based on screened Hartree-Fock exchange method: $\mathrm{Si,AlP,AlAs,GaP}$, and $\mathrm{GaAs}$”, J. Chem. Phys., 132:22 (2010), 224105-1–224105-7 | DOI

[33] Yua L. H., Yaoa K. L., Liua Z. L., “Electronic band structures of filled tetrahedral semiconductor $\mathrm{LiMgP}$ and zinc-blende $\mathrm{AlP}$”, Solid State Commun., 135:1–2 (2005), 124–128 | DOI