Nuclear magnetic relaxation of adsorbed liquids in porous media containing paramagnetic impurity
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 1, pp. 48-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Pulse NMR was used to measure nuclear magnetic relaxation times of diethylene glycol molecules in porous Vycor glasses with a diameter of pores of 11 nm in the temperature interval of 99–342 К and of water molecules in bentonite (Dash-Salakhly deposits, Azerbaijan) at temperatures of 178–293 K. The concentration of diethylene glycol in porous glasses was close to the monolayer content of 11.1 wt %, and the water content in bentonite was kept at 22 wt %. In the range of low temperatures, spin-lattice relaxation time $T_1$ of diethylene glycol is determined by the relaxation times of an electron spin of impurity ions and the spin diffusion mechanism both in original and HCl-washed porous glasses. This work discusses nature of the strong difference in temperature dependences of relaxation times $T_1$ of diethylene glycol molecules in original and HCl-washed porous glasses. Spin-lattice relaxation of the water molecules depends on the paramagnetic ions concentration and the correlation time of the water molecular motions.
Keywords: NMR, relaxation time, porous glasses, monolayer, correlation time.
Mots-clés : bentonites
@article{UZKU_2011_153_1_a3,
     author = {G. G. Pimenov and B. I. Gizatullin},
     title = {Nuclear magnetic relaxation of adsorbed liquids in porous media containing paramagnetic impurity},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {48--57},
     year = {2011},
     volume = {153},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a3/}
}
TY  - JOUR
AU  - G. G. Pimenov
AU  - B. I. Gizatullin
TI  - Nuclear magnetic relaxation of adsorbed liquids in porous media containing paramagnetic impurity
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 48
EP  - 57
VL  - 153
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a3/
LA  - ru
ID  - UZKU_2011_153_1_a3
ER  - 
%0 Journal Article
%A G. G. Pimenov
%A B. I. Gizatullin
%T Nuclear magnetic relaxation of adsorbed liquids in porous media containing paramagnetic impurity
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 48-57
%V 153
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a3/
%G ru
%F UZKU_2011_153_1_a3
G. G. Pimenov; B. I. Gizatullin. Nuclear magnetic relaxation of adsorbed liquids in porous media containing paramagnetic impurity. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 1, pp. 48-57. http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a3/

[1] Resing H. A., “Nuclear Magnetic Resonance Relaxation of Molecules Adsorbed on Surfaces”, Adv. Mol. Relax. Process, 1 (1967–1968), 109–154 | DOI

[2] Pfeifer H., “Nuclear Magnetic Resonance and Relaxation of Molecules Adsorbed on Solids”, NMR: Basic Principles and Progress, 7 (1972), 53–153

[3] Kokin A. A., Izmestev A. A., “O vliyanii adsorbirovannogo veschestva na formu linii magnitnogo rezonansa”, Zhurn. fiz. khimii, 39:3 (1965), 577

[4] Beckert D., “Theorie der intermolekularen kernmagnetischen Relaxation adsorbierter Molekule”, Ann. der Physik, 475:5–6 (1967), 220–229 | DOI

[5] Korb J.-P., Jonas J., “Confinement effects on dipolar relaxation by translational dynamics of liquids in porous silica glasses”, J. Chem. Phys., 98:3 (1993), 2411–2422 | DOI

[6] Sitnitsky A. E., Pimenov G. G., Anisimov A. V., “Spin-lattice NMR Relaxation by Anomalous Translational Diffusion”, J. Magn. Reson., 172 (2005), 48–55 | DOI

[7] Woessner D. E., “Spin Relaxation Processes in a Two-Proton System Undergoing Anisotropic Reorientation”, J. Chem. Phys., 36:1 (1962), 1–4 | DOI

[8] Boddenberg B., “NMR-Relaxationsverhalten von adsorbiertem Benzol an einer methylierten Silika-Oberflache. I. Transversale Relaxationszeiten und Signalintensitaten. Gefriererscheinungen in Kapillarflussigkeiten”, Ber. Bunsen. Gesel. Chem., 78:4 (1974), 354–361

[9] Selvud P., Magnetokhimiya, Izd-vo inostr. lit., M., 1949, 285 pp.

[10] Rostiashvili V. G., Irzhak V. I., Rozenberg B. A., Steklovanie polimerov, Khimiya, L., 1987, 190 pp.

[11] Sanditov D. S., Bartenev G. M., Fizicheskie svoistva neuporyadochennykh struktur, Nauka, Novosibirsk, 1982, 259 pp.

[12] Abragam A., Yadernyi magnetizm, Izd-vo inostr. lit., M., 1963, 551 pp.

[13] Bloembergen N., Morgan L. O., “Proton Relaxation Times in Paramagnetic Solution”, J. Chem. Phys., 34:3 (1961), 842–850 | DOI

[14] Altshuler S. A., Kozyrev B. I., Elektronnyi paramagnitnyi rezonans soedinenii elementov promezhutochnykh grupp, Nauka, M., 1972, 672 pp.

[15] Antipin A. A., Katyshev A. N., Kurkin I. N., “Spin-reshetochnaya relaksatsiya ionov gruppy redkikh zemel v monokristallakh struktury sheelita i flyuorita”, Paramagnitnyi rezonans, Sb. st., 7, Izd-vo Kazan. un-ta, Kazan, 1971, 3–97

[16] Fielding A. J., Fox S., Millhauser G. L., Chattopadhyay M., Kroneck P. M. H., Fritz G., Eaton G. R., Eaton S. S., “Electron spin relaxation of copper (II) complexes in glassy solution between 10 and 120 K”, J. Magn. Reson., 179:1 (2006), 92–104 | DOI

[17] Khutsishvili G. R., “Spinovaya diffuziya”, Usp. fiz. nauk, 87:2 (1965), 211–254

[18] Hougardy J., Stone W. E. E., Fripiat J. J., “NMR study of adsorbed water. I. Molecular orientation and protonic motions in the two-layer hydrate of a Na vermiculite”, J. Chem. Phys., 64:9 (1976), 3840–3851 | DOI

[19] Gizatullin B. I., Pimenov G. G., “Yadernaya magnitnaya relaksatsiya i fazovye perekhody dietilenglikolya v poristykh steklakh tipa Vycor”, Kolloid. zhurn., 72:5 (2010), 613–619

[20] Delville A., Letellier M., “Structure and Dynamics of Simple Liquids in Heterogeneous Condition: An NMR Study of the Clay-Water Interface”, Langmuir., 11:4 (1995), 1361–1367 | DOI

[21] Olivier D., Lauginie P., Fripiat J. J., “Relationship between the longitudinal relaxation rates of water protons and of well defined paramagnetic centers at low temperature in hydrated vermiculite”, Chern. Phys. Lett., 40:1 (1976), 131–133 | DOI