On the existence of equilibrium in an exchange economy with one class of non-convex preferences of consumers
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 1, pp. 240-248 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper focuses on the study of exchange economy models. It deals with situations that, unlike classical cases, allow for violations of the convexity of preference relations of consumers of a certain type. The properties of some characteristics of the economies under study are determined. Proofs of the existence of equilibrium prices and equilibrium distribution of goods are given.
Keywords: exchange economy, preference relation, convexity, equilibrium.
@article{UZKU_2011_153_1_a19,
     author = {M. O. Gavrilova and M. A. Sevodin},
     title = {On the existence of equilibrium in an exchange economy with one class of non-convex preferences of consumers},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {240--248},
     year = {2011},
     volume = {153},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a19/}
}
TY  - JOUR
AU  - M. O. Gavrilova
AU  - M. A. Sevodin
TI  - On the existence of equilibrium in an exchange economy with one class of non-convex preferences of consumers
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 240
EP  - 248
VL  - 153
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a19/
LA  - ru
ID  - UZKU_2011_153_1_a19
ER  - 
%0 Journal Article
%A M. O. Gavrilova
%A M. A. Sevodin
%T On the existence of equilibrium in an exchange economy with one class of non-convex preferences of consumers
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 240-248
%V 153
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a19/
%G ru
%F UZKU_2011_153_1_a19
M. O. Gavrilova; M. A. Sevodin. On the existence of equilibrium in an exchange economy with one class of non-convex preferences of consumers. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 1, pp. 240-248. http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a19/

[1] Nikaido Kh., Vypuklye struktury i matematicheskaya ekonomika, Mir, M., 1972, 549 pp.

[2] Polterovich V. M., Ekonomicheskoe ravnovesie i khozyaistvennyi mekhanizm, Nauka, M., 1990, 256 pp.

[3] Kantorovich L. V., Katyshev P. K., Kiruta A. Ya., Polterovich V. M., “O nekotorykh napravleniyakh issledovanii v matematicheskoi ekonomike”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem., 19, VINITI, M., 1982, 3–21 | Zbl

[4] Ekland I., Elementy matematicheskoi ekonomiki, Mir, M., 1983, 248 pp. | MR

[5] Mas-Colell A., “Indivisible Commodities and General Equilibrium Theory”, J. Econ. Theory, 16:2 (1977), 443–456 | DOI | MR | Zbl

[6] Yamazaki A., “An equilibrium existence theorem without convexity assumptions”, Econometrica, 46:3 (1978), 541–555 | DOI | MR | Zbl

[7] Aumann R. J., “Existence of Competitive Equilibria in Markets with a Continuum of Traders”, Econometrica, 34:1 (1966), 1–17 | DOI | MR | Zbl

[8] Debreu G., “Four aspects of the mathematical theory of economic equilibrium”, Proc. Int. Congress of Mathematicians (Vancouver, 1974, August 21–29), v. 1, Can. Math. Congress, ed. R. D. James, 1975, 65–77 | MR | Zbl

[9] Debreu G., Theory of Value: An Axiomatic Analysis of Economic Equilibrium, Yale Univ. Press, New Haven–London, 1959, 114 pp. | MR

[10] Elton E. J., Gruber M. J., Modern Portfolio Theory and Investment Analysis, John Wiley and Sons, N.Y., 1995, 736 pp.

[11] Kini R. L., Raifa Kh., Prinyatie reshenii pri mnogikh kriteriyakh: predpochteniya i zamescheniya, Radio i svyaz, M., 1981, 560 pp. | MR