Hardy type inequalities for a special family of non-convex domains
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 1, pp. 211-220
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this work, we obtain Hardy type inequalities that involve the distance to the boundary and the volume of a domain for a special family of non-convex domains. These inequalities are analogues of the inequalities for convex domains proved by M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, and J. Tidblom. To prove Hardy type inequalities, we propose a sufficient condition of regularity for multidimensional domains. Hardy type inequalities for certain non-convex domains in two- and three-dimensional spaces are used as an example.
Keywords: Hardy type inequalities, regular domains.
Mots-clés : convex domains
@article{UZKU_2011_153_1_a16,
     author = {A. M. Tukhvatullina},
     title = {Hardy type inequalities for a~special family of non-convex domains},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {211--220},
     year = {2011},
     volume = {153},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a16/}
}
TY  - JOUR
AU  - A. M. Tukhvatullina
TI  - Hardy type inequalities for a special family of non-convex domains
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 211
EP  - 220
VL  - 153
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a16/
LA  - ru
ID  - UZKU_2011_153_1_a16
ER  - 
%0 Journal Article
%A A. M. Tukhvatullina
%T Hardy type inequalities for a special family of non-convex domains
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 211-220
%V 153
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a16/
%G ru
%F UZKU_2011_153_1_a16
A. M. Tukhvatullina. Hardy type inequalities for a special family of non-convex domains. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 1, pp. 211-220. http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a16/

[1] Avkhadiev F. G., Neravenstva dlya integralnykh kharakteristik oblastei, Kazan. gos. un-t, Kazan, 2006, 140 pp.

[2] Avkhadiev F. G., “Neravenstva tipa Khardi v ploskikh i prostranstvennykh otkrytykh mnozhestvakh”, Trudy Matem. in-ta im. V. A. Steklova, 255, 2006, 8–18 | MR

[3] Avkhadiev F. G., “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31 | MR | Zbl

[4] Avkhadiev F. G., Wirths K.-J., “Unified Poincaré and Hardy inequalities with sharp constants for convex domains”, Z. Angew. Math. Mech., 87:8–9 (2007), 632–642 | DOI | MR | Zbl

[5] Brezis H., Marcus M., “Hardy's inequalities revisited”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:1–2 (1978), 217–237 | MR

[6] Davies E. B., “A review of Hardy inequalities”, The Maz'ya anniversary Collection, v. 2, Oper. Theory Adv. Appl., 110, 1999, 55–67 | MR | Zbl

[7] Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Laptev A., “A geometrical version of Hardy's inequality”, J. Funct. Anal., 189:2 (2002), 539–548 | DOI | MR | Zbl

[8] Tidblom J., “A geometrical version of Hardy's inequality for $W^{1,p}_0(\Omega)$”, Proc. Amer. Math. Soc., 132:8 (2004), 2265–2271 | DOI | MR | Zbl

[9] Davies E. B., Spectral Theory and Differential Operators, Cambridge Univ. Press, Cambridge Studies in Advanced Mathematics, 42, Cambridge, 1995, 186 pp. | MR | Zbl