Existence of solutions of filtration problems with multi-valued law in nonhomogeneous media in the presence of a point source
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 1, pp. 168-179
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We formulate a generalized problem of filtration of incompressible fluid governed by a multi-valued law with a linear growth at infinity in nonhomogeneous media in the presence of a point source. We used an additive selection of a feature associated with the singularity of the right side. The solution is represented in the form of the sum of the known solution of a certain linear problem with a point source in the right side, and the unknown term. As for the unknown term, the problem is reduced to the solution of mixed variational inequality in Hilbert space. The existence theorem is proved.
Keywords: nonlinear filtration, multi-valued law, nonhomogeneous media, variational inequality.
Mots-clés : point source
@article{UZKU_2011_153_1_a13,
     author = {S. S. Alekseev and O. A. Zadvornov},
     title = {Existence of solutions of filtration problems with multi-valued law in nonhomogeneous media in the presence of a~point source},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {168--179},
     year = {2011},
     volume = {153},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a13/}
}
TY  - JOUR
AU  - S. S. Alekseev
AU  - O. A. Zadvornov
TI  - Existence of solutions of filtration problems with multi-valued law in nonhomogeneous media in the presence of a point source
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 168
EP  - 179
VL  - 153
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a13/
LA  - ru
ID  - UZKU_2011_153_1_a13
ER  - 
%0 Journal Article
%A S. S. Alekseev
%A O. A. Zadvornov
%T Existence of solutions of filtration problems with multi-valued law in nonhomogeneous media in the presence of a point source
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 168-179
%V 153
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a13/
%G ru
%F UZKU_2011_153_1_a13
S. S. Alekseev; O. A. Zadvornov. Existence of solutions of filtration problems with multi-valued law in nonhomogeneous media in the presence of a point source. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 1, pp. 168-179. http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a13/

[1] Alishaev M. G., “O statsionarnoi filtratsii s nachalnym gradientom”, Teoriya i praktika dobychi nefti, Nedra, M., 1968, 202–211

[2] Bernandiner M. G., Entov V. M., Gidrodinamicheskaya teoriya anomalnykh zhidkostei, Nauka, M., 1975, 199 pp.

[3] Karchevskii M. M., Badriev I. B., “Nelineinye zadachi teorii filtratsii s razryvnymi monotonnymi operatorami”, Chislennye metody mekhaniki sploshnoi sredy (Novosibirsk), 10:5 (1979), 63–78 | MR

[4] Lapin A. V., “Ob issledovanii nekotorykh nelineinykh zadach teorii filtratsii”, Zhurn. vychisl. matem. i matem. fiz., 19:3 (1979), 689–700 | MR | Zbl

[5] Lyashko A. D., Badriev I. B., Karchevskii M. M., “O variatsionnom metode dlya uravnenii s razryvnymi monotonnymi operatorami”, Izv. vuzov. Matem., 1978, no. 11, 63–69 | MR | Zbl

[6] Zadvornov O. A., “Issledovanie nelineinoi statsionarnoi zadachi filtratsii pri nalichii tochechnogo istochnika”, Izv. vuzov. Matem., 2005, no. 1, 58–63 | MR | Zbl

[7] Badriev I. B., Zadvornov O. A., “Issledovanie statsionarnoi zadachi filtratsii s mnogoznachnym zakonom pri nalichii tochechnogo istochnika”, Differents. uravneniya, 41:7 (2005), 874–880 | MR | Zbl

[8] Zadvornov O. A., “Suschestvovanie resheniya kvazilineinoi ellipticheskoi kraevoi zadachi pri nalichii tochechnykh istochnikov”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 152, no. 1, 2010, 155–163 | MR | Zbl

[9] Vainberg M. M., Variatsionnye metody issledovaniya nelineinykh operatorov, Gostekhizdat, M., 1956, 344 pp. | Zbl

[10] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 400 pp. | MR

[11] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR | Zbl

[12] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp. | MR | Zbl