Existence of solutions of filtration problems with multi-valued law in nonhomogeneous media in the presence of a point source
    
    
  
  
  
      
      
      
        
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 1, pp. 168-179
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
            
              We formulate a generalized problem of filtration of incompressible fluid governed by a multi-valued law with a linear growth at infinity in nonhomogeneous media in the presence of a point source. We used an additive selection of a feature associated with the singularity of the right side. The solution is represented in the form of the sum of the known solution of a certain linear problem with a point source in the right side, and the unknown term. As for the unknown term, the problem is reduced to the solution of mixed variational inequality in Hilbert space. The existence theorem is proved.
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
nonlinear filtration, multi-valued law, nonhomogeneous media, variational inequality.
Mots-clés : point source
                    
                  
                
                
                Mots-clés : point source
@article{UZKU_2011_153_1_a13,
     author = {S. S. Alekseev and O. A. Zadvornov},
     title = {Existence of solutions of filtration problems with multi-valued law in nonhomogeneous media in the presence of a~point source},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {168--179},
     publisher = {mathdoc},
     volume = {153},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a13/}
}
                      
                      
                    TY - JOUR AU - S. S. Alekseev AU - O. A. Zadvornov TI - Existence of solutions of filtration problems with multi-valued law in nonhomogeneous media in the presence of a point source JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2011 SP - 168 EP - 179 VL - 153 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a13/ LA - ru ID - UZKU_2011_153_1_a13 ER -
%0 Journal Article %A S. S. Alekseev %A O. A. Zadvornov %T Existence of solutions of filtration problems with multi-valued law in nonhomogeneous media in the presence of a point source %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2011 %P 168-179 %V 153 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a13/ %G ru %F UZKU_2011_153_1_a13
S. S. Alekseev; O. A. Zadvornov. Existence of solutions of filtration problems with multi-valued law in nonhomogeneous media in the presence of a point source. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 1, pp. 168-179. http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a13/
