Voir la notice du chapitre de livre
Mots-clés : point source
@article{UZKU_2011_153_1_a13,
author = {S. S. Alekseev and O. A. Zadvornov},
title = {Existence of solutions of filtration problems with multi-valued law in nonhomogeneous media in the presence of a~point source},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {168--179},
year = {2011},
volume = {153},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a13/}
}
TY - JOUR AU - S. S. Alekseev AU - O. A. Zadvornov TI - Existence of solutions of filtration problems with multi-valued law in nonhomogeneous media in the presence of a point source JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2011 SP - 168 EP - 179 VL - 153 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a13/ LA - ru ID - UZKU_2011_153_1_a13 ER -
%0 Journal Article %A S. S. Alekseev %A O. A. Zadvornov %T Existence of solutions of filtration problems with multi-valued law in nonhomogeneous media in the presence of a point source %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2011 %P 168-179 %V 153 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a13/ %G ru %F UZKU_2011_153_1_a13
S. S. Alekseev; O. A. Zadvornov. Existence of solutions of filtration problems with multi-valued law in nonhomogeneous media in the presence of a point source. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 1, pp. 168-179. http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a13/
[1] Alishaev M. G., “O statsionarnoi filtratsii s nachalnym gradientom”, Teoriya i praktika dobychi nefti, Nedra, M., 1968, 202–211
[2] Bernandiner M. G., Entov V. M., Gidrodinamicheskaya teoriya anomalnykh zhidkostei, Nauka, M., 1975, 199 pp.
[3] Karchevskii M. M., Badriev I. B., “Nelineinye zadachi teorii filtratsii s razryvnymi monotonnymi operatorami”, Chislennye metody mekhaniki sploshnoi sredy (Novosibirsk), 10:5 (1979), 63–78 | MR
[4] Lapin A. V., “Ob issledovanii nekotorykh nelineinykh zadach teorii filtratsii”, Zhurn. vychisl. matem. i matem. fiz., 19:3 (1979), 689–700 | MR | Zbl
[5] Lyashko A. D., Badriev I. B., Karchevskii M. M., “O variatsionnom metode dlya uravnenii s razryvnymi monotonnymi operatorami”, Izv. vuzov. Matem., 1978, no. 11, 63–69 | MR | Zbl
[6] Zadvornov O. A., “Issledovanie nelineinoi statsionarnoi zadachi filtratsii pri nalichii tochechnogo istochnika”, Izv. vuzov. Matem., 2005, no. 1, 58–63 | MR | Zbl
[7] Badriev I. B., Zadvornov O. A., “Issledovanie statsionarnoi zadachi filtratsii s mnogoznachnym zakonom pri nalichii tochechnogo istochnika”, Differents. uravneniya, 41:7 (2005), 874–880 | MR | Zbl
[8] Zadvornov O. A., “Suschestvovanie resheniya kvazilineinoi ellipticheskoi kraevoi zadachi pri nalichii tochechnykh istochnikov”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 152, no. 1, 2010, 155–163 | MR | Zbl
[9] Vainberg M. M., Variatsionnye metody issledovaniya nelineinykh operatorov, Gostekhizdat, M., 1956, 344 pp. | Zbl
[10] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 400 pp. | MR
[11] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR | Zbl
[12] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp. | MR | Zbl