Shock impact of a cavitation bubble on an elastic body
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 1, pp. 131-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Axially symmetric impact of a high-speed jet arising on the surface of a bubble during its collapse near a surface of a body is studied. The jet is directed orthogonally to the plane surface of the body. The body is modelled by elastic semi-space, and the jet is modelled by a cylindrical liquid column. The waves in the liquid are described by the linear acoustics; the waves in semi-space are described by the linearly elastic body. Both the case when the bubble is in direct contact with the surface of the body and the case when there is an intermediate liquid layer between them are considered. The instant the jet touches upon the surface of the body or the intermediate liquid layer is taken as the initial one. Results of computation of shock impact of a water jet on a steel body for various thicknesses of the intermediate layer are presented.
Mots-clés : cavitation destruction
Keywords: non-spherical bubble dynamics, collapse of a bubble near a wall, interaction of a bubble with a wall.
@article{UZKU_2011_153_1_a10,
     author = {A. A. Aganin and M. A. Ilgamov and V. G. Malakhov and T. F. Khalitova and N. A. Khismatullina},
     title = {Shock impact of a~cavitation bubble on an elastic body},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {131--146},
     year = {2011},
     volume = {153},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a10/}
}
TY  - JOUR
AU  - A. A. Aganin
AU  - M. A. Ilgamov
AU  - V. G. Malakhov
AU  - T. F. Khalitova
AU  - N. A. Khismatullina
TI  - Shock impact of a cavitation bubble on an elastic body
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 131
EP  - 146
VL  - 153
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a10/
LA  - ru
ID  - UZKU_2011_153_1_a10
ER  - 
%0 Journal Article
%A A. A. Aganin
%A M. A. Ilgamov
%A V. G. Malakhov
%A T. F. Khalitova
%A N. A. Khismatullina
%T Shock impact of a cavitation bubble on an elastic body
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 131-146
%V 153
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a10/
%G ru
%F UZKU_2011_153_1_a10
A. A. Aganin; M. A. Ilgamov; V. G. Malakhov; T. F. Khalitova; N. A. Khismatullina. Shock impact of a cavitation bubble on an elastic body. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 1, pp. 131-146. http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a10/

[1] Blake J. R., Gibson D. C., “Cavitation bubbles near boundaries”, An. Rev. Fluid Mech., 19 (1987), 99–123 | DOI

[2] Rayleigh Lord, “On the pressure developed in a liquid on a collapse of a spherical cavity”, Phylos Mag., 34:200 (1917), 94–97 | DOI | MR

[3] Kornfeld M., Suvorov N., “On the destructive action of cavitation”, Appl. Phys., 15 (1944), 495–506 | DOI

[4] Plesset M. S., Chapman R. B., “Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary”, J. Fluid Mech., 47 (1971), 283–290 | DOI

[5] Lauterborn W., Bolle H., “Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary”, J. Fluid Mech., 72 (1975), 391–399 | DOI

[6] Blake J. R., Keen G. S., Tong R. P., Wilson M., “Acoustic cavitation: the fluid dynamics of non-spherical bubbles”, Phil. Trans. R. Soc. Lond., 357 (1999), 251–267 | DOI | MR | Zbl

[7] Shima A., Sato Y., “The collapse of a spherical bubble near a solid wall”, J. de Mécanique, 20 (1981), 253–271 | Zbl

[8] Chahine G. L., Bovis A. G., “Pressure field generated by non-spherical bubble collapse”, Trans. ASME. J. Fluid Eng., 105 (1983), 356–363 | DOI

[9] Aganin A. A., Davletshin A. I., “Modelirovanie vzaimodeistviya gazovykh puzyrkov v zhidkosti s uchetom ikh maloi nesferichnosti”, Matem. modelirovanie, 21:6 (2009), 89–102 | Zbl

[10] Voinov O. V., Voinov V. V., “Chislennyi metod rascheta nestatsionarnykh dvizhenii idealnoi neszhimaemoi zhidkosti so svobodnymi poverkhnostyami”, Dokl. AN SSSR, 221:3 (1975), 559–562 | Zbl

[11] Voinov O. V., Voinov V. V., “O skheme zakhlopyvaniya kavitatsionnogo puzyrka okolo stenki i obrazovaniya kumulyativnoi struiki”, Dokl. AN SSSR, 227:1 (1976), 63–66

[12] Blake J. R., Taib B. B., Doherty G., “Transient cavities near boundaries. Part 1. Rigid boundary”, J. Fluid Mech., 170 (1986), 479–497 | DOI | Zbl

[13] Kurbatskii K. A., Kedrinskii V. K., “Collapse of a bubble in the cavitation zone near a rigid boundary”, Abstr. of 124th Meeting of ASA, (Oct. 31 – Nov. 4, 1992, New Orleans), 1992, 2453

[14] Best J. P., “The formation of toroidal bubbles upon the collapse of transient cavities”, J. Fluid Mech., 251 (1993), 79–107 | DOI | Zbl

[15] Blake J. R., Robinson P. B., Shima A., Tomita Y., “Interaction of two cavitation bubbles with a rigid boundary”, J. Fluid Mech., 255 (1993), 707–721 | DOI

[16] Chahine G. L., Duraiswami R., Boundary element method for calculating 2-D and 3-D underwater explosion bubble behavior in free water and near structures, Report NCWCDD/TR-93/44, NSWC Weapons Research and Technology Department, 1994

[17] Boulton-Stone J. M., “A comparison of boundary integral methods for studying the motion of two-dimensional bubble in an infinite fluid”, Comput. Meth. Appl. Mech. Eng., 102 (1993), 213–234 | DOI | MR | Zbl

[18] Sato K., Tomita Y., Shima A., “Numerical analysis of a gas bubble near a rigid boundary in an oscillating pressure field”, J. Acoust. Soc. Am., 95 (1994), 2416–2424 | DOI

[19] Robinson P. B., Boulton-Stone J. M., Blake J. R., “Application of the boundary integral method to the interaction of rising two-dimensional deformable gas bubbles”, J. Eng. Math., 29:5 (1995), 393–412 | DOI | MR | Zbl

[20] Blake J. R., Hooton M. C., Robinson P. B., Tong R. P., “Collapsing cavities, toroidal bubbles and jet impact”, Phil. Trans. R. Soc. Lond. Ser. A, 355:1724 (1997), 537–550 | DOI | MR | Zbl

[21] Blake J. R., Tomita Y., Tong R. P., “The Art, Craft and Science of Modelling Jet Impact in a Collapsing Cavitation Bubble”, Appl. Sci. Res., 58:1–4 (1998), 77–90

[22] Wang Q. X., “The Evolution of a Gas Bubble Near an Inclined Wall”, Theor. Comp. Fluid Dynamics, 12:1 (1998), 29–51 | DOI | Zbl

[23] Zhang Y. L., Yeo K. S., Khoo B. C., Chong W. K., “Simulation of three-dimensional bubbles using desingularized boundary integral method”, Int. J. Numer. Meth. Fluid, 31:8 (1999), 1311–1320 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[24] Harris P. J., Verma A., Chakrabarti R., “Interaction of an explosion bubble with a fixed rigid structure”, Int. J. Numer. Meth. Fluid, 29:4 (1999), 389–396 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[25] Blake J. R., Keen G. S., Tong R. P., Wilson M., “Acoustic cavitation: the fluid dynamics of non-spherical bubbles”, Phyl. Trans. R. Soc. Lond. A, 357 (1999), 251–267 | DOI | MR | Zbl

[26] Afanasev K. E., Grigoreva I. V., “Issledovanie evolyutsii prostranstvennogo kavitatsionnogo puzyrya okolo tverdoi stenki v idealnoi neszhimaemoi zhidkosti pri nalichii poverkhnostnogo natyazheniya”, Trudy Matem. tsentra im. Lobachevskogo, 7, Kazan, 2000, 38–42

[27] Brujan E. A., Keen G. S., Vogel A., Blake J. R., “The final stage of the collapse of a cavitation bubble close to a rigid boundary”, Phys. Fluids, 14:1 (2002), 85–92 | DOI

[28] Zhang Z. Y., Zhang H. S., “Surface tension effects on the behavior of a cavity growing, collapsing, and rebounding near a rigid wall”, Phys. Rev. E, 70:5 (2004), 056310-1–056310-15 | DOI

[29] Zhang Z. Y., Zhang H. S., “Surface tension effects on the behavior of two cavities near a rigid wall”, Phys. Rev. E, 71:6 (2005), 066302-1–066302-16 | DOI

[30] Afanasiev K. E., Grigorieva I. V., “Numerical investigation of three-dimensional bubble dynamics”, J. Eng. Math., 55:1–4 (2006), 65–80 | DOI | MR | Zbl

[31] Lee M., Klaseboer E., Khoo B. C., “On the boundary integral method for the rebounding bubble”, J. Fluid Mech., 570 (2007), 407–429 | DOI | MR | Zbl

[32] Lenoir M., “Calcul numerique de l'implosion d'une bulle de cavitation au voisinage d'une paroi ou d'une surface libre”, J. de Mécanique, 15 (1976), 725–751 | MR | Zbl

[33] Prosperetti A., “Bubble dynamics: a review and some recent results”, Appl. Sci. Res., 38:1 (1982), 145–164 | DOI | MR | Zbl

[34] Taib B. B., Doherty G., Blake J. R., “Boundary integral methods applied to cavitation bubble dynamics”, Math. Program. and Numerical Anal. Workshop, Proc. Cent. Math. Anal. ANU, 6, eds. S. A. Gustafson, R. S. Wormersley, 1984, 166–186 | Zbl

[35] Taib B. B., Boundary integral methods applied to cavitation bubble dynamics, PhD Thesis, Univ. Wollongong, New South Wales, Australia, 1985 | MR | Zbl

[36] Blake J. R., Taib B. B., Doherty G., “Transient cavities near boundaries Part 2. Free surface”, J. Fluid Mech., 181:1 (1987), 197–212 | DOI

[37] Stroud A. H., Secrest D., Gaussian Quadrature Formulas, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966, 383 pp. | MR | Zbl

[38] Mitchell T. M., Kling C. L., Cheeseweight R., Hammit F. G., Numerical and photographic studies of asymmetric bubble collapse, Technical Report 07738_5_T, University of Michigan, July, 1967, svobodnyi http://deepblue.lib.umich.edu/bitstream/2027.42/6658/5/bac9336.0001.001.pdf

[39] Harlow F. G., Welch J. E., “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surfaces”, Phys. Fluid, 8 (1965), 2182–2189 | DOI | Zbl

[40] Plesset M. S., Chapman R. B., Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary, Report No 85-49, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 1970, svobodnyi http://authors.library.caltech.edu/4075/1/Plesset_ms_85-49.pdf

[41] Mitchell T. M., Hammit F. G., “Asymmetric cavitation bubble collapse”, Trans. ASME, D95:1 (1973), 29–37

[42] Bevir M. K., Fielding P. J., “Numerical solution of incompressible bubble collapse with jetting”, Moving boundary Problems in Heat Flow and Diffusion, eds. J. R. Ockendon, W. R. Hodgkins, Clarendon Press, Oxford, 1975, 286–294

[43] Ryskin G., Leal L. G., “Orthogonal mapping”, J. Comput. Phys., 56 (1983), 71–100 | DOI | MR

[44] Ryskin G., Leal L. G., “Numerical solutions of free boundary problems in fluid mechanics. Part I. The finite-difference technique”, J. Fluid Mech., 148 (1984), 1–17 | DOI | Zbl

[45] Ryskin G., Leal L. G., “Numerical solutions of free boundary problems in fluid mechanics. Part II. Buoyancy-driven motion of a gas bubble through a quiescent liquid”, J. Fluid Mech., 148 (1984), 19–36 | DOI

[46] Ryskin G., Leal L. G., “Numerical solutions of free boundary problems in fluid mechanics. Part III. Bubble deformation in an axisymmetric strainig flow”, J. Fluid Mech., 148 (1984), 37–44 | DOI

[47] Shopov P. J., Minev P. D., Bazhlekov I. B., Zapryanov Z. D., “Interaction of a deformable bubble with a rigid wall at moderate Reynolds numbers”, J. Fluid Mech., 219 (1990), 241–271 | DOI

[48] Popinet S., Zaleski S., “Bubble collapse near solid boundary: a numerical study of the influence of viscosity”, J. Fluid Mech., 464 (2002), 137–163 | DOI | Zbl

[49] Sankin G. N., Zhong P., “Interaction between shock wave and single inertial bubbles near an elastic boundary”, Phys. Rev. E, 74:4 (2006), 046304-1–046304-4 | DOI

[50] Mettin R., Luther S., Lindau O., Koch P., Lauterborn W., “Investigations of cavitation bubble dynamics by means of fast cinematography”, Dynamics of Multiphase Systems, Proceedings of Int. Conf. on Nultiphase Systems, ICMS' 2000 (June 15–17, 2000, Ufa, Bashkortostan, Russia), Gilem Publ., Pol Publ., Ufa, 2000, 279–287

[51] Cheban V. G., Naval I. K., Sabodash P. F., Cherednichenko R. A., Chislennye metody resheniya zadach dinamicheskoi teorii uprugosti, Shtiintsa, Kishinev, 1976, 226 pp. | MR | Zbl

[52] Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Kraiko A. N., Prokopov G. P., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR

[53] Ilgamov M. A., Gilmanov A. N., Neotrazhayuschie usloviya na granitsakh raschetnoi oblasti, FIZMATLIT, M., 2003, 240 pp. | MR | Zbl