The solution of a state constrained optimal control problem by the right-hand side of an elliptic equation
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 4, pp. 56-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article deals with grid approximation of a state and control constrained optimal control problem by a finite element or finite difference method. The control function is the right hand side of a linear elliptic equation. The convergence of the iterative solution methods for the discrete problem is investigated both theoretically and numerically. The comparison of the numerical results for the different iterative methods is done.
Keywords: optimal control, constrained saddle point problems, finite element method, iterative method.
@article{UZKU_2010_152_4_a4,
     author = {A. V. Lapin and M. G. Khasanov},
     title = {The solution of a state constrained optimal control problem by the right-hand side of an elliptic equation},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {56--67},
     year = {2010},
     volume = {152},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2010_152_4_a4/}
}
TY  - JOUR
AU  - A. V. Lapin
AU  - M. G. Khasanov
TI  - The solution of a state constrained optimal control problem by the right-hand side of an elliptic equation
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2010
SP  - 56
EP  - 67
VL  - 152
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2010_152_4_a4/
LA  - ru
ID  - UZKU_2010_152_4_a4
ER  - 
%0 Journal Article
%A A. V. Lapin
%A M. G. Khasanov
%T The solution of a state constrained optimal control problem by the right-hand side of an elliptic equation
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2010
%P 56-67
%V 152
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2010_152_4_a4/
%G ru
%F UZKU_2010_152_4_a4
A. V. Lapin; M. G. Khasanov. The solution of a state constrained optimal control problem by the right-hand side of an elliptic equation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 4, pp. 56-67. http://geodesic.mathdoc.fr/item/UZKU_2010_152_4_a4/

[1] Gill Ph., Murray W., Wright M., Practical optimization., Acad. Press, London, 1981, 401 pp. | MR

[2] Bertsekas D. P., Constrained optimization and Lagrange multiplier methods, Acad. Press, N.Y., 1982, 395 pp. | MR | Zbl

[3] Biegler L. T., Ghattas O., Heinkenschloss M., van Bloemen Waanders B. (eds.), Large-scale PDE-constrained optimization, Lecture Notes in Computational Science and Engineering, 30, Springer, Berlin, 2003, 349 pp. | DOI | MR

[4] Bergounioux M., “Augmented Lagrangian method for distributed optimal control problems with state constraints”, Optimization Theory Appl., 78:3 (1993), 493–521 | DOI | MR | Zbl

[5] Bergounioux M., Haddou V., Hintermuller M., Kunisch K., “A comparison of a Moreau-Yosida-based active set strategy and interior point methods for constrained optimal control problems”, SIAM J. Optim., 11:2 (2000), 495–521 | DOI | MR | Zbl

[6] Bergounioux M., Kunisch K., “Primal-dual strategy for state-constrained optimal control problems”, Comput. Optim. Appl., 22:2 (2002), 193–224 | DOI | MR | Zbl

[7] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 400 pp. | MR

[8] Lapin A. V., Iteratsionnye metody resheniya setochnykh varaitsionnykh neravenstv, Izd-vo Kazan. un-ta, Kazan, 2008, 132 pp.