Iterative method for solving seepage problems in multilayer beds in the presence of a point source
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 4, pp. 39-55
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to solving the stationary seepage problems of non-compressible fluid following the nonlinear multi-valued filtration law with limiting gradient in multilayer beds in the presence of a point source. This problem is mathematically formulated in the form of mixed variational inequality with inversely strongly monotone operator in Hilbert space. For the solving of the considered variational inequality the iterative splitting method is offered. Unlike the previously considered methods, this one makes it possible to find not only the pressure of the fluid, but also the filtration velocity in the domains corresponding to the multi-valued points in the filtration law. The convergence of the iterative method results is investigated.
Keywords: seepage theory, multilayer bed, inversely strongly monotone operator, iterative process.
Mots-clés : point source
@article{UZKU_2010_152_4_a3,
     author = {I. B. Badriev and B. Ya. Fanyuk},
     title = {Iterative method for solving seepage problems in multilayer beds in the presence of a~point source},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {39--55},
     year = {2010},
     volume = {152},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2010_152_4_a3/}
}
TY  - JOUR
AU  - I. B. Badriev
AU  - B. Ya. Fanyuk
TI  - Iterative method for solving seepage problems in multilayer beds in the presence of a point source
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2010
SP  - 39
EP  - 55
VL  - 152
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2010_152_4_a3/
LA  - ru
ID  - UZKU_2010_152_4_a3
ER  - 
%0 Journal Article
%A I. B. Badriev
%A B. Ya. Fanyuk
%T Iterative method for solving seepage problems in multilayer beds in the presence of a point source
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2010
%P 39-55
%V 152
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2010_152_4_a3/
%G ru
%F UZKU_2010_152_4_a3
I. B. Badriev; B. Ya. Fanyuk. Iterative method for solving seepage problems in multilayer beds in the presence of a point source. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 4, pp. 39-55. http://geodesic.mathdoc.fr/item/UZKU_2010_152_4_a3/

[1] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989, 400 pp. | MR

[2] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR | Zbl

[3] Badriev I. B., Zadvornov O. A., “Metody dekompozitsii dlya resheniya variatsionnykh neravenstv vtorogo roda s obratno silno monotonnymi operatorami”, Differents. uravneniya, 39:7 (2003), 888–895 | MR | Zbl

[4] Badriev I. B., Zadvornov O. A., “Postanovka i issledovanie nelineinykh zadach filtratsii pri nalichii tochechnykh istochnikov”, Differents. uravneniya, 44:7 (2008), 932–941 | MR | Zbl

[5] Entov V. M., Pankov V. N., Panko S. V., Matematicheskaya teoriya tselikov ostatochnoi vyazkoplastichnoi nefti, Izd-vo Tom. un-ta, Tomsk, 1989, 196 pp.

[6] Alishaev M. G., “O statsionarnoi filtratsii s nachalnym gradientom”, Teoriya i praktika dobychi nefti, Nedra, M., 1968, 202–211

[7] Karchevskii M. M., Badriev I. B., “Nelineinye zadachi teorii filtratsii s razryvnymi monotonnymi operatorami”, Chislennye metody mekhaniki sploshnoi sredy (Novosibirsk), 10:5 (1979), 63–78 | MR

[8] Badriev I. B., Zadvornov O. A., “Issledovanie statsionarnoi zadachi filtratsii s mnogoznachnym zakonom pri nalichii tochechnogo istochnika”, Differents. uravneniya, 41:7 (2005), 874–880 | MR | Zbl

[9] Badriev I. B., Zadvornov O. A., “Iteratsionnye metody resheniya zadach ob opredelenii granits tselikov ostatochnoi vyazkoplastichnoi nefti v mnogosloinykh plastakh”, Differents. uravneniya, 45:7 (2009), 973–979 | MR | Zbl

[10] Bernandiner M. G., Entov V. M., Gidrodinamicheskaya teoriya filtratsii anomalnykh zhidkostei, Nauka, M., 1975, 199 pp.

[11] Zadvornov O. A., “Issledovanie nelineinoi statsionarnoi zadachi filtratsii pri nalichii tochechnogo istochnika”, Izv. vuzov. Matem., 2005, no. 1, 58–63 | MR | Zbl

[12] Glushenkov V. D., “Ob odnom uravnenii nelineinoi teorii filtratsii”, Prikladnaya matematika v nauchno-tekhnicheskikh zadachakh, Izd-vo Kazan. un-ta, Kazan, 1976, 12–21

[13] Badriev I. B., Zadvornov O. A., Saddek A. M., “Issledovanie skhodimosti iteratsionnykh metodov resheniya nekotorykh variatsionnykh neravenstv s psevdomonotonnymi operatorami”, Differents. uravneniya, 37:7 (2001), 891–898 | MR | Zbl

[14] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp. | MR | Zbl

[15] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 400 pp. | MR

[16] M. Fortin, R. Glowinski (eds.), Résolution numériques de problèmes aux limites par des méthodes de Lagrangien augmenté, Dunod, Paris, 1983, 320 pp. | MR