Mathematical modelling of the evolution of polycrystalline materials structure under elastoplastic deformation
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 4, pp. 225-237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A two-level (macro- and mesolevel) mathematical model for describing polycrystalline material's severe plastic deformation accompanied by the evolution of its structure is suggested. The model uses constitutive equations with internal variables. For the mesolevel model of polycrystalline aggregate, the authors take into account the intragranular dislocation slip with different hardening mechanisms, as well as the crystal lattice rotations in grains due to the incompatibility of dislocation motion in neighbouring grains. The results of solving the problem of copper cylindrical work extrusion are given and discussed.
Keywords: anisotropy of properties, physical theories of plasticity, texture, hardening, two-level model.
Mots-clés : internal variables, constitutive equations
@article{UZKU_2010_152_4_a19,
     author = {P. V. Trusov and V. N. Ashikhmin and P. S. Volegov and A. I. Shveikin},
     title = {Mathematical modelling of the evolution of polycrystalline materials structure under elastoplastic deformation},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {225--237},
     year = {2010},
     volume = {152},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2010_152_4_a19/}
}
TY  - JOUR
AU  - P. V. Trusov
AU  - V. N. Ashikhmin
AU  - P. S. Volegov
AU  - A. I. Shveikin
TI  - Mathematical modelling of the evolution of polycrystalline materials structure under elastoplastic deformation
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2010
SP  - 225
EP  - 237
VL  - 152
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2010_152_4_a19/
LA  - ru
ID  - UZKU_2010_152_4_a19
ER  - 
%0 Journal Article
%A P. V. Trusov
%A V. N. Ashikhmin
%A P. S. Volegov
%A A. I. Shveikin
%T Mathematical modelling of the evolution of polycrystalline materials structure under elastoplastic deformation
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2010
%P 225-237
%V 152
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2010_152_4_a19/
%G ru
%F UZKU_2010_152_4_a19
P. V. Trusov; V. N. Ashikhmin; P. S. Volegov; A. I. Shveikin. Mathematical modelling of the evolution of polycrystalline materials structure under elastoplastic deformation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 4, pp. 225-237. http://geodesic.mathdoc.fr/item/UZKU_2010_152_4_a19/

[1] Trusov P. V., Ashikhmin V. N., Volegov P. S., Shveikin A. I., “Opredelyayuschie sootnosheniya i ikh primenenie dlya opisaniya evolyutsii mikrostruktury”, Fiz. mezomekhanika, 12:3 (2009), 61–71

[2] Makarov P. V., “Modelirovanie protsessov deformatsii i razrusheniya na mezourovne”, Izv. RAN. MTT, 1999, no. 5, 109–130

[3] Trusov P. V., Ashikhmin V. N., Shveikin A. I., “Dvukhurovnevaya model uprugoplasticheskogo deformirovaniya polikristalllicheskikh materialov”, Mekhanika kompozitsionnykh materialov i konstruktsii, 15:3 (2009), 327–344

[4] Diard O., Leclercq S., Rousselier G., Cailletaud G., “Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity. Application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries”, Int. J. Plast., 21 (2005), 691–722 | DOI | Zbl

[5] Ashikhmin V. N., Trusov P. V., “Pryamoe modelirovanie uprugoplasticheskogo povedeniya polikristallov na mezourovne”, Fiz. mezomekhanika, 5:3 (2002), 37–51

[6] Anand L., “Single-crystal elasto-viscoplasticity: application to texture evolution in polycrystalline metals at large strains”, Comput. Meth. Appl. Mech. Eng., 193 (2004), 5359–5383 | DOI | MR | Zbl

[7] Van Houtte P., Li S., Seefeldt M., Delannay L., “Deformation texture prediction: from the Taylor model to the advanced Lamel model”, Int. J. Plast., 21 (2005), 589–624 | DOI | Zbl

[8] Trusov P. V., Ashikhmin V. N., Shveikin A. I., “Dvukhurovnevaya model statsionarnykh protsessov uprugoplasticheskogo deformirovaniya. Chast 1. Algoritm”, Vychislitelnaya mekhanika sploshnykh sred, 1:3 (2008), 15–24

[9] Pozdeev A. A., Trusov P. V., Nyashin Yu. I., Bolshie uprugoplasticheskie deformatsii: teoriya, algoritmy, prilozheniya, Nauka, M., 1986, 232 pp. | MR | Zbl

[10] Lin T. G., “Fizicheskaya teoriya plastichnosti”, Problemy teorii plastichnosti, Ser. Novoe v zarubezhnoi mekhanike, 7, Mir, M., 1976, 7–68

[11] Taylor G. I., “Plastic strain in metals”, J. Inst. Metals, 62 (1938), 307–324

[12] Mirkin L. I., Fizicheskie osnovy prochnosti i plastichnosti, Izd-vo Mosk. un-ta, M., 1968, 538 pp.

[13] Khonikomb R., Plasticheskaya deformatsiya metallov, Mir, M., 1972, 408 pp.

[14] Alekhin V. P., Fizika prochnosti i plastichnosti poverkhnostnykh sloev materialov, Nauka, M., 1983, 280 pp.

[15] Rybin V. V., Bolshie plasticheskie deformatsii i razrushenie metallov, Metallurgiya, M., 1986, 224 pp.

[16] Horstemeyer M. F., Potirniche G. P., Marin E. B., Handbook of Materials Modeling, Springer, 2005, 1133–1149 | DOI