Finite deformations in materials with structural changes
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 4, pp. 210-224 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is concerned with the problem of dividing the inelastic energy into heat and latent energy, the latter being connected with the structural changes in a material. Here we use the approach leading, in the framework of finite deformations, to the heat conductivity equation, namely, to that part of it, which defines heat production by inelastic sources. Taking into account the experimental data, it has been supposed that the elastic properties of a material do not depend on the structural changes caused by plastic deformations. The experimental curve describing the fraction of plastic work transformed into heat has been obtained.
Keywords: finite deformations, heat conductivity equation, heat and latent inelastic energy, plastic work transformed into heat.
@article{UZKU_2010_152_4_a18,
     author = {A. A. Rogovoi},
     title = {Finite deformations in materials with structural changes},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {210--224},
     year = {2010},
     volume = {152},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2010_152_4_a18/}
}
TY  - JOUR
AU  - A. A. Rogovoi
TI  - Finite deformations in materials with structural changes
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2010
SP  - 210
EP  - 224
VL  - 152
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2010_152_4_a18/
LA  - ru
ID  - UZKU_2010_152_4_a18
ER  - 
%0 Journal Article
%A A. A. Rogovoi
%T Finite deformations in materials with structural changes
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2010
%P 210-224
%V 152
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2010_152_4_a18/
%G ru
%F UZKU_2010_152_4_a18
A. A. Rogovoi. Finite deformations in materials with structural changes. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 4, pp. 210-224. http://geodesic.mathdoc.fr/item/UZKU_2010_152_4_a18/

[1] Rogovoi A. A., “Kinematika i termodinamika uprugo-neuprugogo protsessa pri konechnykh deformatsiyakh”, Elektr. zhurn. “Fiziko-khimicheskaya kinetika v gazovoi dinamike”, 7 (2008) http://www.chemphys.edu.ru/pdf/2008-09-01-022.pdf

[2] Rogovoi A. A., “Opredelyayuschie sootnosheniya dlya konechnykh uprugo-neuprugikh deformatsii”, Prikl. mekh. i tekhn. fiz., 46:5 (2005), 138–149 | MR | Zbl

[3] Rogovoi A. A., “Termodinamika uprugo-neuprugogo protsessa pri konechnykh deformatsiyakh”, Prikl. mekh. i tekhn. fiz., 48:4 (2007), 144–153 | MR

[4] Rogovoi A. A., “Kinematika uprugo-neuprugogo protsessa pri konechnykh deformatsiyakh”, Prikl. mekh. i tekhn. fiz., 49:1 (2008), 165–172 | MR

[5] Novokshanov R. S., Rogovoi A. A., “O postroenii evolyutsionnykh opredelyayuschikh sootnoshenii dlya konechnykh deformatsii”, Izv. RAN. MTT, 2002, no. 4, 77–95

[6] Novokshanov R. S., Rogovoi A. A., “Evolyutsionnye opredelyayuschie sootnosheniya dlya konechnykh vyazkouprugikh deformatsii”, Izv. RAN. MTT, 2005, no. 4, 122–140

[7] Trusdell K., Pervonachalnyi kurs ratsionalnoi mekhaniki sploshnykh sred, Mir, M., 1975, 592 pp.

[8] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988, 552 pp. | MR | Zbl

[9] Lankaster P., Teoriya matrits, Nauka, M., 1978, 280 pp. | MR

[10] Rogovoi A. A., “Differentsirovanie skalyarnykh i tenzornykh funktsii tenzornogo argumenta”, Vestn. Perm. gos. tekhn. un-ta. Dinamika i prochnost mashin, 2001, no. 2, 83–90

[11] Lure A. I., Teoriya uprugosti, Nauka, M., 1970, 940 pp. | Zbl

[12] Stolbova O. S., Termouprugie i termouprugoplasticheskie protsessy pri konechnykh deformatsiyakh: primenenie formalizovannogo podkhoda, Avtoref. dis. $\dots$ kand. fiz.-mat. nauk, Perm, 2008, 17 pp.

[13] Rosakis P., Rosakis A. J., Ravichandran G., Hodowany J., “A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals”, J. Mech. Phys. Solids, 48 (2000), 581–607 | DOI | MR | Zbl