Numerical investigation of large deformations of hyperelastic solids. IV. Finite element realization
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 4, pp. 115-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article is the fourth part of a series of papers called “Numerical investigation of large deformations of hyperelastic solids” and deals with the finite element realization of an algorithm described in the first three parts. Some energy potentials of elastic deformations are presented, and for one of them the finite element realization is derived. The examples of problems and their solutions are given.
Keywords: large deformations, hyperelasticity, finite element method.
@article{UZKU_2010_152_4_a10,
     author = {A. I. Golovanov and Yu. G. Konoplev and L. U. Sultanov},
     title = {Numerical investigation of large deformations of hyperelastic solids. {IV.~Finite} element realization},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {115--126},
     year = {2010},
     volume = {152},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2010_152_4_a10/}
}
TY  - JOUR
AU  - A. I. Golovanov
AU  - Yu. G. Konoplev
AU  - L. U. Sultanov
TI  - Numerical investigation of large deformations of hyperelastic solids. IV. Finite element realization
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2010
SP  - 115
EP  - 126
VL  - 152
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2010_152_4_a10/
LA  - ru
ID  - UZKU_2010_152_4_a10
ER  - 
%0 Journal Article
%A A. I. Golovanov
%A Yu. G. Konoplev
%A L. U. Sultanov
%T Numerical investigation of large deformations of hyperelastic solids. IV. Finite element realization
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2010
%P 115-126
%V 152
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2010_152_4_a10/
%G ru
%F UZKU_2010_152_4_a10
A. I. Golovanov; Yu. G. Konoplev; L. U. Sultanov. Numerical investigation of large deformations of hyperelastic solids. IV. Finite element realization. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 4, pp. 115-126. http://geodesic.mathdoc.fr/item/UZKU_2010_152_4_a10/

[1] Golovanov A. I., Konoplev Yu. G., Sultanov L. U., “Chislennoe issledovanie konechnykh deformatsii giperuprugikh tel. I. Kinematika i variatsionnye uravneniya”, Uchen. zap. Kazan. un-ta. Ser. fiz.-matem. nauki, 150, no. 1, 2008, 29–37 | Zbl

[2] Golovanov A. I., Konoplev Yu. G., Sultanov L. U., “Chislennoe issledovanie konechnykh deformatsii giperuprugikh tel. II. Fizicheskie sootnosheniya”, Uchen. zap. Kazan. un-ta. Ser. fiz.-matem. nauki, 150, no. 3, 2008, 122–132

[3] Golovanov A. I., Konoplev Yu. G., Sultanov L. U., “Chislennoe issledovanie konechnykh deformatsii giperuprugikh tel. III. Postanovki zadachi i algoritmy resheniya”, Uchen. zap. Kazan. un-ta. Ser. fiz.-matem. nauki, 151, no. 3, 2009, 108–120 | Zbl

[4] Chernykh K. F., Nelineinaya teoriya uprugosti v mashinostroitelnykh raschetakh, Mashinostroenie, L., 1986, 336 pp.

[5] Yeoh O. H., “Some forms of strain energy function for rubber”, Rubber Chem. Techn., 66 (1994), 754–771 | DOI

[6] Arruda E. M., Boyce M. C., “A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials”, J. Mech. Physics Solids, 41 (1993), 389–412 | DOI

[7] Auricchio F., “A robust integration-algorithm for a finite-strain shape-memory-alloy superelastic model”, Int. J. Plasticity, 17 (2001), 971–990 | DOI | Zbl

[8] Auricchio F., Taylor R. L., “A return-map algorithm for general associative isotropic elasto-plastic materials in large deformation regimes”, Int. J. Plasticity, 15 (1999), 1359–1378 | DOI | Zbl

[9] Simo J. S., Taylor R. L., Pister K. S., “Variational and projection methods for the volume constraint in finite deformation elasto-plastisity”, Comput. Meth. Appl. Mech. Eng., 51 (1985), 177–208 | DOI | MR | Zbl

[10] Simo J. S., Pister K. S., “Remarks on rate constitutive equations for finite deformation problems: computational implications”, Comput. Meth. Appl. Mech. Eng., 46 (1984), 201–215 | DOI | Zbl

[11] Storakers B., “On material representation and constitutive branching in finite compressible elasticity”, J. Mech. Phys. Solids, 34 (1986), 125–145 | DOI | Zbl

[12] Bonet J., “Large strain viscoelastic constitutive models”, Int. J. Solids Struct., 38 (2001), 2953–2968 | DOI | Zbl

[13] Bonet J., Wood R. D., Nonlinear continuum mechanics for finite element analysis, 1997, 283 pp. | MR

[14] Hartmann S., Neff P., “Polyconvexity of general polynomial-type hyperelastic strain energy functions for near-incompressibility”, Int. J. Solids Struct., 40 (2003), 2767–2791 | DOI | MR | Zbl