Radiation power spectrum for two interacting two-level atoms at final temperature
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 3, pp. 135-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The system of two interacting two-level atoms was investigated. The master equation for the reduced atomic density matrix in Markovian approximation was obtained. The spectral line shape was analytically calculated and plotted for different values of the distance between atoms and different thermostat temperatures.
Keywords: master equation, system of two-level atoms, spectral line shape.
@article{UZKU_2010_152_3_a19,
     author = {V. V. Semin and A. V. Gorokhov},
     title = {Radiation power spectrum for two interacting two-level atoms at final temperature},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {135--140},
     year = {2010},
     volume = {152},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2010_152_3_a19/}
}
TY  - JOUR
AU  - V. V. Semin
AU  - A. V. Gorokhov
TI  - Radiation power spectrum for two interacting two-level atoms at final temperature
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2010
SP  - 135
EP  - 140
VL  - 152
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2010_152_3_a19/
LA  - ru
ID  - UZKU_2010_152_3_a19
ER  - 
%0 Journal Article
%A V. V. Semin
%A A. V. Gorokhov
%T Radiation power spectrum for two interacting two-level atoms at final temperature
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2010
%P 135-140
%V 152
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2010_152_3_a19/
%G ru
%F UZKU_2010_152_3_a19
V. V. Semin; A. V. Gorokhov. Radiation power spectrum for two interacting two-level atoms at final temperature. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 3, pp. 135-140. http://geodesic.mathdoc.fr/item/UZKU_2010_152_3_a19/

[1] Gorokhov A. V., Metody teorii grupp v zadachakh kvantovoi fiziki, ch. 3, Izd-vo Kuib. un-ta, Kuibyshev, 1983, 96 pp.

[2] Davies E. B., Quantum Theory of Open System, Acad. Press, N.Y., 1976, 412 pp. | MR | Zbl

[3] Blum K., Teorii matritsy plotnosti i ee prilozheniya, Mir, M., 1983, 248 pp. | MR

[4] Semin V. V., Gorokhov A. V., “Kvantovaya nemarkovskaya relaksatsiya v sisteme dvukhurovnevykh atomov”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 152, no. 2, 2010, 158–163 | Zbl

[5] Lehmberg R. H., “Radiation from N-atom system. I. General formalism”, Phys. Rev. A, 2 (1970), 883–889 | DOI

[6] Fain V. N., Kvantovaya radiofizika, v. 1, Fotony i nelineinye sredy, Sov. radio, M., 1972, 472 pp.

[7] Skaili M. O., Zubairi M. S., Kvantovaya optika, Fizmatlit, M., 2003, 512 pp.

[8] Gorokhov A. V., Semin V. V., “Raschet spektra fluorestsentsii dlya dvukh vzaimodeistvuyuschikh atomov”, Optika i spektr, 107:4 (2009), 617–622

[9] Lax M., “Quantum Noise. XI. Multitime correspondence between quantum and classical stochastic processes”, Phys. Rev., 172 (1968), 350–361 | DOI