Quantum non-Markovian relaxation in a system of two-level atoms
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 2, pp. 158-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article examines the system of two interacting two-level atoms. In a short memory approximation the non-Markovian master equation is obtained. Spectral line shape is determined on the basis of the solution of this equation for the system under study.
Keywords: master equation, system of two-level atoms, spectral line shape.
Mots-clés : non-Markovian relaxation
@article{UZKU_2010_152_2_a19,
     author = {V. V. Semin and A. V. Gorokhov},
     title = {Quantum {non-Markovian} relaxation in a~system of two-level atoms},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {158--163},
     year = {2010},
     volume = {152},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2010_152_2_a19/}
}
TY  - JOUR
AU  - V. V. Semin
AU  - A. V. Gorokhov
TI  - Quantum non-Markovian relaxation in a system of two-level atoms
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2010
SP  - 158
EP  - 163
VL  - 152
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2010_152_2_a19/
LA  - ru
ID  - UZKU_2010_152_2_a19
ER  - 
%0 Journal Article
%A V. V. Semin
%A A. V. Gorokhov
%T Quantum non-Markovian relaxation in a system of two-level atoms
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2010
%P 158-163
%V 152
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2010_152_2_a19/
%G ru
%F UZKU_2010_152_2_a19
V. V. Semin; A. V. Gorokhov. Quantum non-Markovian relaxation in a system of two-level atoms. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 2, pp. 158-163. http://geodesic.mathdoc.fr/item/UZKU_2010_152_2_a19/

[1] Lindblad G., “On the generators of quantum dynamical semigroups”, Commun. Math. Phys., 48:2 (1976), 119–130 | DOI | MR | Zbl

[2] Van Kampen N. G., Stokhasticheskie protsessy v fizike i khimii, Vyssh. shk., M., 1990, 376 pp. | Zbl

[3] Fain B., Irreversibilities in Quantum Mechanics, Kluwer Acad. Publ., N.Y., 2002, 224 pp.

[4] Zwanzig R., “Ensemble Method in the Theory of Irreversibility”, J. Chem. Phys., 33:5 (1960), 1338–1341 | DOI | MR

[5] Breuer H.-P., Petruccione F., The Theory of Open Quantum Systems, Oxford Univ. Press, Oxford, 2002, 645 pp. | MR | Zbl

[6] Shabani A., Lidar D. A., “Completely positive post-Markovian master equation via a measurement approach”, Phys. Rev. A, 71:2 (2005), 020101(R)-1–020101(R)-4 | DOI | MR

[7] Gorokhov A. V., Mikhailov A. V., “Relaksatsiya dvukhurovnevoi sistemy, vzaimodeistvuyuschei s vneshnim stokhasticheskim polem”, Teoret. fizika, 2000, no. 1, 54–62

[8] Skaili M. O., Zubairi M. S., Kvantovaya optika, Fizmatlit, M, 2003, 512 pp.

[9] Gangopadhyay G., “Non-Markovian master equation for linear and nonlinear systems”, Phys. Rev. A, 46:3 (1992), 1507–1515 | DOI | MR

[10] Kurizki G., Ben-Reuven A., “Theory of cooperative fluorescence from products of reactions or collions: identical neutral atomic fragments”, Phys. Rev. A, 36 (1987), 90–102 | DOI

[11] Gorokhov A. V., Semin V. V., “Raschet spektra fluorestsentsii dlya dvukh vzaimodeistvuyuschikh atomov”, Optika i spektroskopiya, 107:4 (2009), 617–622

[12] Lax M., “Quantum Noise. XI. Multitime correspondence between quantum and classical stochastic processes”, Phys. Rev., 172 (1968), 350–361 | DOI