Existence of solution of the equilibrium soft network shell problem in the presence of a point load
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 1, pp. 93-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A spatial equilibrium soft network shell problem in the presence of a point source is considered. We assume that the functions specifying the physical relations in the threads forming the shell are continuous, non-decreasing and have linear growth at infinity. The generalized problem in the form of integral identity is formulated. The existence theorem is proved.
Keywords: soft network shell, monotone operator, existence theorem.
Mots-clés : point source
@article{UZKU_2010_152_1_a8,
     author = {I. B. Badriev and V. V. Banderov and O. A. Zadvornov},
     title = {Existence of solution of the equilibrium soft network shell problem in the presence of a~point load},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {93--102},
     year = {2010},
     volume = {152},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a8/}
}
TY  - JOUR
AU  - I. B. Badriev
AU  - V. V. Banderov
AU  - O. A. Zadvornov
TI  - Existence of solution of the equilibrium soft network shell problem in the presence of a point load
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2010
SP  - 93
EP  - 102
VL  - 152
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a8/
LA  - ru
ID  - UZKU_2010_152_1_a8
ER  - 
%0 Journal Article
%A I. B. Badriev
%A V. V. Banderov
%A O. A. Zadvornov
%T Existence of solution of the equilibrium soft network shell problem in the presence of a point load
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2010
%P 93-102
%V 152
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a8/
%G ru
%F UZKU_2010_152_1_a8
I. B. Badriev; V. V. Banderov; O. A. Zadvornov. Existence of solution of the equilibrium soft network shell problem in the presence of a point load. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 1, pp. 93-102. http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a8/

[1] Badriev I. B., Zadvornov O. A., “Issledovanie razreshimosti statsionarnykh zadach dlya setchatykh obolochek”, Izv. vuzov. Matem., 1992, no. 11, 3–7 | MR | Zbl

[2] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR | Zbl

[3] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp. | MR

[4] Zadvornov O. A., “Issledovanie nelineinoi statsionarnoi zadachi filtratsii pri nalichii tochechnogo istochnika”, Izv. vuzov. Matem., 2005, no. 1, 58–63 | MR | Zbl

[5] Zadvornov O. A., “Suschestvovanie resheniya kvazilineinoi ellipticheskoi kraevoi zadachi pri nalichii tochechnykh istochnikov”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 152, no. 1, 2010, 155–163 | Zbl

[6] Ridel V. V., Gulin B. V., Dinamika myagkikh obolochek, Nauka, M., 1990, 206 pp. | MR | Zbl

[7] Biderman V. L., Bukhin B. L., “Uravneniya ravnovesiya bezmomentnoi setchatoi obolochki”, Izv. AN SSSR. Mekhanika tverdogo tela, 1966, no. 1, 81–89 | Zbl

[8] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1988, 348 pp. | MR

[9] Vainberg M. M., Variatsionnye metody issledovaniya nelineinykh operatorov, Gostekhizdat, M., 1956, 344 pp. | Zbl

[10] Glushenkov V. D., “Ob odnom uravnenii nelineinoi teorii filtratsii”, Prikladnaya matematika v nauchno-tekhnicheskikh zadachakh, Izd-vo Kazan. un-ta, Kazan, 1976, 12–21