General solution of the one-phase Hele-Shaw problem for elliptic bubble
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 1, pp. 80-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the general case of several multipole we study one-phase Hele-Shaw flow with a moving boundary when surface tension effect is negligible. We find the explicit solution with nonstationary elliptic shape of the bubble for case when Hele-Shaw flow is produced by any combination of sink, dipole and quadropole at infinity. This general solution includes all known particular cases. In the particular case of a dipole at infinity we find new explicit solution with stationary elliptic shape of the bubble that is not symmetrical with respect to the flow.
Keywords: one-phase Hele-Shaw problem, elliptic bubble.
@article{UZKU_2010_152_1_a7,
     author = {M. M. Alimov},
     title = {General solution of the one-phase {Hele-Shaw} problem for elliptic bubble},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {80--92},
     year = {2010},
     volume = {152},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a7/}
}
TY  - JOUR
AU  - M. M. Alimov
TI  - General solution of the one-phase Hele-Shaw problem for elliptic bubble
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2010
SP  - 80
EP  - 92
VL  - 152
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a7/
LA  - ru
ID  - UZKU_2010_152_1_a7
ER  - 
%0 Journal Article
%A M. M. Alimov
%T General solution of the one-phase Hele-Shaw problem for elliptic bubble
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2010
%P 80-92
%V 152
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a7/
%G ru
%F UZKU_2010_152_1_a7
M. M. Alimov. General solution of the one-phase Hele-Shaw problem for elliptic bubble. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 1, pp. 80-92. http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a7/

[1] Saffman P. G., Taylor G. I., “The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid”, Proc. Roy. Soc. London Ser. A, 245:1242 (1958), 312–329 | DOI | MR | Zbl

[2] Lamb H., Hydrodynamics, Cambridge Univ. Press, Cambridge, 1932 ; Lamb G., Gidrodinamika, Gostekhizdat, M.–L., 1947, 928 pp. | MR | Zbl

[3] Batchelor G. K., An Introduction to Fluid Dynamics, Cambridge Univ. Press, Cambridge, 1970 ; Betchelor Dzh., Vvedenie v dinamiku zhidkosti, Mir, M., 1973, 760 pp. | MR

[4] Howison S. D., “Bubble growth in porous media and Hele-Shaw cells”, Proc. Roy. Soc. Edinburgh Ser. A, 102:1–2 (1986), 141–148 | DOI | MR | Zbl

[5] Taylor G. I., Saffman P. G., “A note on the motion of bubbles in a Hele-Shaw cell and porous medium”, Quart. J. Mech. Appl. Math., 12 (1959), 265–279 | DOI | MR | Zbl

[6] Entov V. M., Etingof P. I., Kleinbock D. Ya., “Hele-Shaw flows with a free boundary produced by multipoles”, Europ. J. Appl. Math., 4:2 (1993), 97–120 | DOI | MR | Zbl

[7] Polubarinova-Kochina P. Ya., “K voprosu o peremeschenii kontura neftenosnosti”, Dokl. AN SSSR, 47:4 (1945), 254–257

[8] Galin L. A., “Neustanovivshayasya filtratsiya so svobodnoi granitsei”, Dokl. AN SSSR, 47:4 (1945), 250–253 | MR

[9] Howison S. D., “Complex variable methods in Hele-Shaw moving boundary problems”, Europ. J. Appl. Math., 3:3 (1992), 209–224 | DOI | MR | Zbl

[10] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973, 736 pp. | MR

[11] Alimov M. M., “Obschee reshenie zadachi Khele-Shou dlya techenii v kanale”, PMM, 70:3 (2006), 384–399 | MR | Zbl

[12] Birkhoff G., Zarantonello E., Jets, wakes and cavities, Acad. Press, N.Y., 1957 ; Birkgof G., Sarantonello E., Strui, sledy i kaverny, Mir, M., 1964, 466 pp. | MR | Zbl | MR

[13] Alimov M. M., “Rost puzyrya v yacheike Khele-Shou”, Izv. RAN. MZhG, 2007, no. 2, 133–147 | MR | Zbl

[14] Richardson S., “Hele-Shaw flows with a free boundary produced by injection of fluid into a narrow channel”, J. Fluid Mech., 56 (1972), 609–618 | DOI | Zbl

[15] Davis P. J., The Schwarz Function and its Applications, Math. Assoc. of America, Washington, 1974, 228 pp. | MR

[16] Howison S. D., “Fingering in Hele-Shaw cells”, J. Fluid Mech., 167 (1986), 439–453 | DOI | MR | Zbl