Nonconformal finite element schemes for hyperbolic linear systems of equations
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 1, pp. 245-254 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we propose a variant of nonconformal finite element method of approximation of the multidimensional linear first order hyperbolic system. The approach is used that was suggested earlier for the scalar convection-diffusion equation, based on Galerkin–Petrov approximation for the mixed formulation of the original problem, taking into account the direction of convection. Using this approach for the approximation of symmetric systems of equations allows naturally to take into account the local direction of the characteristics, as well as preserve the basic properties of the spatial operator of the original problem. Unconditional stability of the semidiscrete scheme, implicit two-layer difference schemes with weights is proved.
Keywords: linear hyperbolic systems, mesh schemes, non-conformal finite element methods, difference schemes with weights.
@article{UZKU_2010_152_1_a22,
     author = {E. M. Fedotov},
     title = {Nonconformal finite element schemes for hyperbolic linear systems of equations},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {245--254},
     year = {2010},
     volume = {152},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a22/}
}
TY  - JOUR
AU  - E. M. Fedotov
TI  - Nonconformal finite element schemes for hyperbolic linear systems of equations
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2010
SP  - 245
EP  - 254
VL  - 152
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a22/
LA  - ru
ID  - UZKU_2010_152_1_a22
ER  - 
%0 Journal Article
%A E. M. Fedotov
%T Nonconformal finite element schemes for hyperbolic linear systems of equations
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2010
%P 245-254
%V 152
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a22/
%G ru
%F UZKU_2010_152_1_a22
E. M. Fedotov. Nonconformal finite element schemes for hyperbolic linear systems of equations. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 1, pp. 245-254. http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a22/

[1] Kulikovskii A. G., Pogorelov N. V., Semënov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001, 608 pp. | MR

[2] Lyashko A. D., Fedotov E. M., “Predelnye skhemy Galërkina–Petrova dlya uravneniya konvektsii-diffuzii”, Differents. uravneniya, 45:7 (2009), 1042–1052 | MR | Zbl

[3] Cockburn B., Shu C.-W., “The local discontinuous Galerkin method for time-dependent convection-diffusion systems”, SIAM J. Numer. Anal., 35:6 (1998), 2440–2463 | DOI | MR | Zbl

[4] Cockburn B., “Discontinuous Galerkin methods for convection dominated problems”, High-Order Methods for Computational Physics, Lecture Notes in Computational Science and Engineering, 9, eds. T. Barth, H. Deconink, Springer-Verlag, 1999, 69–224 | DOI | MR | Zbl

[5] Ern A., Guermond J.-L., Theory and Practice of Finite Elements, Applied Mathematical Sciences, 159, Springer-Verlag, N.Y., 2004, 520 pp. | DOI | MR

[6] Jensen M., Discontinuous Galerkin Methods for Friedrichs Systems with Irregular Solutions, PhD Thesis, Oxford University, Oxford, 2004 http://web.comlab.ox.ac.uk/oucl/research/na/theses.html

[7] Hartmann R., “Discontinuous {G}alerkin methods for compressible flows: higher order accuracy, error estimation and adaptivity”, VKI LS 2006-01: CFD-Higher Order Discretization Methods (Nov. 14–18, 2005), eds. H. Deconinck, M. Ricchiuto, Von Karman Institute for Fluid Dynamics, Rhode Saint Genèse, Belgium, 2005

[8] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp. | MR

[9] Samarskii A. A., Teoriya raznostnykh skhem, Mir, M., 1977, 656 pp. | MR

[10] Lyashko A. D., Fedotov E. M., Raznostnye skhemy dlya nelineinykh nestatsionarnykh zadach, Izd-vo Kazan. un-ta, Kazan, 2008, 199 pp.