@article{UZKU_2010_152_1_a22,
author = {E. M. Fedotov},
title = {Nonconformal finite element schemes for hyperbolic linear systems of equations},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {245--254},
year = {2010},
volume = {152},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a22/}
}
TY - JOUR AU - E. M. Fedotov TI - Nonconformal finite element schemes for hyperbolic linear systems of equations JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2010 SP - 245 EP - 254 VL - 152 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a22/ LA - ru ID - UZKU_2010_152_1_a22 ER -
%0 Journal Article %A E. M. Fedotov %T Nonconformal finite element schemes for hyperbolic linear systems of equations %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2010 %P 245-254 %V 152 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a22/ %G ru %F UZKU_2010_152_1_a22
E. M. Fedotov. Nonconformal finite element schemes for hyperbolic linear systems of equations. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 1, pp. 245-254. http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a22/
[1] Kulikovskii A. G., Pogorelov N. V., Semënov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001, 608 pp. | MR
[2] Lyashko A. D., Fedotov E. M., “Predelnye skhemy Galërkina–Petrova dlya uravneniya konvektsii-diffuzii”, Differents. uravneniya, 45:7 (2009), 1042–1052 | MR | Zbl
[3] Cockburn B., Shu C.-W., “The local discontinuous Galerkin method for time-dependent convection-diffusion systems”, SIAM J. Numer. Anal., 35:6 (1998), 2440–2463 | DOI | MR | Zbl
[4] Cockburn B., “Discontinuous Galerkin methods for convection dominated problems”, High-Order Methods for Computational Physics, Lecture Notes in Computational Science and Engineering, 9, eds. T. Barth, H. Deconink, Springer-Verlag, 1999, 69–224 | DOI | MR | Zbl
[5] Ern A., Guermond J.-L., Theory and Practice of Finite Elements, Applied Mathematical Sciences, 159, Springer-Verlag, N.Y., 2004, 520 pp. | DOI | MR
[6] Jensen M., Discontinuous Galerkin Methods for Friedrichs Systems with Irregular Solutions, PhD Thesis, Oxford University, Oxford, 2004 http://web.comlab.ox.ac.uk/oucl/research/na/theses.html
[7] Hartmann R., “Discontinuous {G}alerkin methods for compressible flows: higher order accuracy, error estimation and adaptivity”, VKI LS 2006-01: CFD-Higher Order Discretization Methods (Nov. 14–18, 2005), eds. H. Deconinck, M. Ricchiuto, Von Karman Institute for Fluid Dynamics, Rhode Saint Genèse, Belgium, 2005
[8] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp. | MR
[9] Samarskii A. A., Teoriya raznostnykh skhem, Mir, M., 1977, 656 pp. | MR
[10] Lyashko A. D., Fedotov E. M., Raznostnye skhemy dlya nelineinykh nestatsionarnykh zadach, Izd-vo Kazan. un-ta, Kazan, 2008, 199 pp.