The Laplace operator spectrum on connected compact simple rank one and two Lie groups
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 1, pp. 219-234 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper we suggest an algorithm for calculation of the Laplace operator spectrum for real-valued and complex-valued functions defined on a connected compact simple Lie group with a bi-invariant Riemannian metric. By means of the algorithm an explicit calculation of the spectrum is given for all connected compact simple Lie groups of rank one and two.
Keywords: Laplace operator, spectrum, Lie group representation, highest weight, Killing form.
@article{UZKU_2010_152_1_a20,
     author = {V. M. Svirkin},
     title = {The {Laplace} operator spectrum on connected compact simple rank one and two {Lie} groups},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {219--234},
     year = {2010},
     volume = {152},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a20/}
}
TY  - JOUR
AU  - V. M. Svirkin
TI  - The Laplace operator spectrum on connected compact simple rank one and two Lie groups
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2010
SP  - 219
EP  - 234
VL  - 152
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a20/
LA  - ru
ID  - UZKU_2010_152_1_a20
ER  - 
%0 Journal Article
%A V. M. Svirkin
%T The Laplace operator spectrum on connected compact simple rank one and two Lie groups
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2010
%P 219-234
%V 152
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a20/
%G ru
%F UZKU_2010_152_1_a20
V. M. Svirkin. The Laplace operator spectrum on connected compact simple rank one and two Lie groups. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 1, pp. 219-234. http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a20/

[1] Berestovskii V. N., Svirkin V. M., “Operator Laplasa na odnorodnykh normalnykh rimanovykh mnogoobraziyakh”, Matem. trudy, 12:2 (2009), 3–40 | MR

[2] Berestovskii V. N., Svirkin V. M., “Spektr operatora Laplasa na kompaktnykh odnosvyaznykh prostykh gruppakh Li ranga dva”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 151, no. 4, 2009, 15–35 | Zbl

[3] Dynkin E. B., Onischik A. L., “Kompaktnye gruppy Li v tselom”, Usp. matem. nauk, 10:4(66) (1955), 3–74 | MR | Zbl

[4] Adams Dzh., Lektsii po gruppam Li, Nauka, M., 1979, 144 pp. | MR | Zbl

[5] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1973, 520 pp. | MR | Zbl

[6] Burbaki N., Gruppy i algebry Li, Glavy I–III, Mir, M., 1976, 496 pp. | MR

[7] Burbaki N., Gruppy i algebry Li, Glavy IV–VI, Mir, M., 1972, 334 pp. | MR | Zbl

[8] Cartan E., “Les groupes projectifs qui ne laissent invariante aucune multiplicity plane”, Bull. Soc. Math., 41 (1913), 53–94 | MR