Asymptotically most accurate double-side confidence intervals in normal-normal model
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 1, pp. 205-218
Cet article a éte moissonné depuis la source Math-Net.Ru
This article presents a form of the most precise class of confidence intervals for the normal-normal model in $d$-posterior approach. It is possible to state its asymptotical behavior with the increase of the sample size. A way of the most asymptotically accurate confidence family construction is also suggested in this article.
Keywords:
normal-normal model, $d$-posteriory probability of errors, double-side confidence intervals.
@article{UZKU_2010_152_1_a19,
author = {R. F. Salimov and S. V. Simushkin},
title = {Asymptotically most accurate double-side confidence intervals in normal-normal model},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {205--218},
year = {2010},
volume = {152},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a19/}
}
TY - JOUR AU - R. F. Salimov AU - S. V. Simushkin TI - Asymptotically most accurate double-side confidence intervals in normal-normal model JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2010 SP - 205 EP - 218 VL - 152 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a19/ LA - ru ID - UZKU_2010_152_1_a19 ER -
%0 Journal Article %A R. F. Salimov %A S. V. Simushkin %T Asymptotically most accurate double-side confidence intervals in normal-normal model %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2010 %P 205-218 %V 152 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a19/ %G ru %F UZKU_2010_152_1_a19
R. F. Salimov; S. V. Simushkin. Asymptotically most accurate double-side confidence intervals in normal-normal model. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 1, pp. 205-218. http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a19/
[1] Volodin I. N, Novikov An. A., Simushkin S. V., “Aposteriornyi podkhod k probleme garantiinosti statisticheskogo kontrolya kachestva”, Obozrenie prikl. i promyshl. matem., 1994, no. 2, 148–178 | MR | Zbl
[2] Volodin I. N., Simushkin S. V., “Doveritelnoe otsenivanie v $d$-aposteriornom podkhode”, Teoriya veroyatnostei i eë primeneniya, 35:2 (1990), 242–254 | MR | Zbl
[3] Zaks Sh., Teoriya statisticheskikh vyvodov, Mir, M., 1975, 776 pp.
[4] Feller V., Vvedenie v teoriyu veroyatnostei i eë prilozheniya, Mir, M., 1967, 499 pp. | Zbl