Application of NVIDIA CUDA technology for numerical solution of hydrodinamic problems
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 1, pp. 142-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Advantages of NVIDIA CUDA technology are presented on the example of classical problem of evolution of Calvin–Helmholz instability. Finite-difference as well as meshless methods are considered. Short observation of CUDA technology is given.
Keywords: computational fluid dynamics, parallel computations, CUDA technology.
@article{UZKU_2010_152_1_a13,
     author = {D. E. Demidov and A. G. Egorov and A. N. Nuriev},
     title = {Application of {NVIDIA} {CUDA} technology for numerical solution of hydrodinamic problems},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {142--154},
     year = {2010},
     volume = {152},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a13/}
}
TY  - JOUR
AU  - D. E. Demidov
AU  - A. G. Egorov
AU  - A. N. Nuriev
TI  - Application of NVIDIA CUDA technology for numerical solution of hydrodinamic problems
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2010
SP  - 142
EP  - 154
VL  - 152
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a13/
LA  - ru
ID  - UZKU_2010_152_1_a13
ER  - 
%0 Journal Article
%A D. E. Demidov
%A A. G. Egorov
%A A. N. Nuriev
%T Application of NVIDIA CUDA technology for numerical solution of hydrodinamic problems
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2010
%P 142-154
%V 152
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a13/
%G ru
%F UZKU_2010_152_1_a13
D. E. Demidov; A. G. Egorov; A. N. Nuriev. Application of NVIDIA CUDA technology for numerical solution of hydrodinamic problems. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 1, pp. 142-154. http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a13/

[1] Stone J. E. E., Phillips J. C. C., Freddolino P. L. L. et al., “Accelerating molecular modeling applications with graphics processors”, J. Comput. Chem., 28:16 (2007), 2618–2640 | DOI

[2] Van Meel J. A., Arnold A., Frenkel D. et al., “Harvesting graphics power for MD simulations”, Mol. Simulat., 34:3 (2008), 259–266 | DOI

[3] Zwart S. F. P., Belleman R. G., Geldof P. M., “High-performance direct gravitational N-body simulations on graphics processing units”, New Astronomy, 12:8 (2007), 641–650 | DOI

[4] Harris C., Haines K., Staveley-Smith L., “GPU accelerated radio astronomy signal convolution”, Exp. Astron., 22:1 (2008), 129–141 | DOI

[5] Muyan-Ozcelik P., Owens J. D., Xia J., Samant S. S., “Fast deformable registration on the GPU: A CUDA implementation of demons”, Computational Science and its Applications, Intern. Conf., 2008, 223–233 | DOI

[6] Noël P. B., Walczak A., Hoffmann K. R. et al., “Clinical Evaluation of GPU-Based Cone Beam Computed Tomography”, Proc. of High-Performance Medical Image Computing and Computer-Aided Intervention (HP-MICCAI), 2008

[7] Winant C. D., Browand F. K., “Vortex pairing: the mechanism of turbulent mixing-layer growth at moderate raynolds number”, J. Fluid Mech., 63:2 (1974), 237–255 | DOI

[8] Aref H., Siggia E. D., “Vortex dynamics of the two-dimensional turbulent shear layer”, J. Fluid Mech., 100:4 (1980), 705–737 | DOI | MR

[9] Weinan E., Liu J.-G., “Vorticity boundary condition and related issues for finite difference schemes”, J. Comput. Phys., 124 (1996), 368–382 | DOI | MR | Zbl

[10] Hockney R. W., “A fast direct solution of Poisson's equation using Fourier analysis”, J. ACM, 12:1 (1965), 95–113 | DOI | MR | Zbl

[11] Trottenberg U., Oosterlee C., Schüller A., Multigrid, Acad. Press, London, 2001, 631 pp. | MR | Zbl

[12] Bell N., Garland M., Efficient sparse matrix-vector multiplication on CUDA, NVIDIA Technical Report NVR-2008-004, NVIDI Corporation, 2008

[13] Baskaran M. M., Bordawekar R., Optimizing sparse matrix-vector multiplication on GPUs, IBM Research Report RC24704 (W0812-047), IBM, 2009

[14] NVIDIA CUDA Programming guide, Version 2.2, NVIDIA Corporation, 2009

[15] Harris M., CUDA data parallel primitives library http://gpgpu.org/developer/cudpp

[16] CUDA CUFFT Library, Version 2.2, NVIDIA Corporation, 2009

[17] Khokni R., Istvud D., Chislennoe modelirovanie metodom chastits, Mir, M., 1987, 639 pp.

[18] Marsden J. E., Chorin A. J., A Mathematical Introduction to Fluid Mechanics, Texts in Applied Mathematics, Springer, 1993, 169 pp. | MR

[19] Matsumoto M., Nishimura T., “Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator”, ACM Trans. Model. Comput. Simul., 8:1 (1998), 3–30 | DOI | Zbl

[20] Nyland L., Harris M., Prins J., “Fast N-body simulation with CUDA”, GPU Gems 3, ed. H. Nguyen, Addison Wesley Professional, 2007, 677–695